equality of inverse limits in $R=k[x_1,x_2,…]$
$begingroup$
Let $k$ be a field, $R=k[x_1,x_2,x_3...]=k[x_i]_{mathbb{N}_0}$ and $mathfrak{m}=(x_1,x_2,x_3,...)$.
I want to check whether the following equality is true or not:
$varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$
I claim that this equality is true. And I claim
$varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}=L= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$, where $L={fin k[[x_i]]_{i in mathbb{N}_0} | f(0)=0}$
My try:
I define $phi_i: L longrightarrow mathfrak{m}/mathfrak{m}^{i+1}: p mapsto p + mathfrak{m}^{i+1}$.
Let $F:mathbb{N}^{op} longrightarrow mathcal{C}$ such that $F(i)=mathfrak{m}/mathfrak{m}^{i+1}$ and $F(igeq j)= mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$.
We want to check that $F(igeq j) circ phi_j=phi_i$:
$F(igeq j): mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}: p + mathfrak{m}^{i+1} mapsto p + mathfrak{m}^{j+1}$
$F(igeq j) circ phi_i: L longrightarrow p/mathfrak{m}^{j+1}: p mapsto p + mathfrak{m}^{j+1}$
$phi_j: L longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$
And this is $F(igeq j)circ phi_i =phi_j$.
Now we have to see that if there is a $(L',alpha)$ satisfying the same condition, then there exists a unique morphism $u:Llongrightarrow L'$ such that $phi circ u = alpha$. But I do not know how to check that.
I know I still need to prove that the right inverse limit is equal to $L$.
But how could I prove the fact mentioned above?
Thank you.
abstract-algebra commutative-algebra limits-colimits
$endgroup$
add a comment |
$begingroup$
Let $k$ be a field, $R=k[x_1,x_2,x_3...]=k[x_i]_{mathbb{N}_0}$ and $mathfrak{m}=(x_1,x_2,x_3,...)$.
I want to check whether the following equality is true or not:
$varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$
I claim that this equality is true. And I claim
$varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}=L= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$, where $L={fin k[[x_i]]_{i in mathbb{N}_0} | f(0)=0}$
My try:
I define $phi_i: L longrightarrow mathfrak{m}/mathfrak{m}^{i+1}: p mapsto p + mathfrak{m}^{i+1}$.
Let $F:mathbb{N}^{op} longrightarrow mathcal{C}$ such that $F(i)=mathfrak{m}/mathfrak{m}^{i+1}$ and $F(igeq j)= mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$.
We want to check that $F(igeq j) circ phi_j=phi_i$:
$F(igeq j): mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}: p + mathfrak{m}^{i+1} mapsto p + mathfrak{m}^{j+1}$
$F(igeq j) circ phi_i: L longrightarrow p/mathfrak{m}^{j+1}: p mapsto p + mathfrak{m}^{j+1}$
$phi_j: L longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$
And this is $F(igeq j)circ phi_i =phi_j$.
Now we have to see that if there is a $(L',alpha)$ satisfying the same condition, then there exists a unique morphism $u:Llongrightarrow L'$ such that $phi circ u = alpha$. But I do not know how to check that.
I know I still need to prove that the right inverse limit is equal to $L$.
But how could I prove the fact mentioned above?
Thank you.
abstract-algebra commutative-algebra limits-colimits
$endgroup$
add a comment |
$begingroup$
Let $k$ be a field, $R=k[x_1,x_2,x_3...]=k[x_i]_{mathbb{N}_0}$ and $mathfrak{m}=(x_1,x_2,x_3,...)$.
I want to check whether the following equality is true or not:
$varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$
I claim that this equality is true. And I claim
$varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}=L= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$, where $L={fin k[[x_i]]_{i in mathbb{N}_0} | f(0)=0}$
My try:
I define $phi_i: L longrightarrow mathfrak{m}/mathfrak{m}^{i+1}: p mapsto p + mathfrak{m}^{i+1}$.
Let $F:mathbb{N}^{op} longrightarrow mathcal{C}$ such that $F(i)=mathfrak{m}/mathfrak{m}^{i+1}$ and $F(igeq j)= mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$.
We want to check that $F(igeq j) circ phi_j=phi_i$:
$F(igeq j): mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}: p + mathfrak{m}^{i+1} mapsto p + mathfrak{m}^{j+1}$
$F(igeq j) circ phi_i: L longrightarrow p/mathfrak{m}^{j+1}: p mapsto p + mathfrak{m}^{j+1}$
$phi_j: L longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$
And this is $F(igeq j)circ phi_i =phi_j$.
Now we have to see that if there is a $(L',alpha)$ satisfying the same condition, then there exists a unique morphism $u:Llongrightarrow L'$ such that $phi circ u = alpha$. But I do not know how to check that.
I know I still need to prove that the right inverse limit is equal to $L$.
But how could I prove the fact mentioned above?
Thank you.
abstract-algebra commutative-algebra limits-colimits
$endgroup$
Let $k$ be a field, $R=k[x_1,x_2,x_3...]=k[x_i]_{mathbb{N}_0}$ and $mathfrak{m}=(x_1,x_2,x_3,...)$.
I want to check whether the following equality is true or not:
$varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$
I claim that this equality is true. And I claim
$varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}=L= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$, where $L={fin k[[x_i]]_{i in mathbb{N}_0} | f(0)=0}$
My try:
I define $phi_i: L longrightarrow mathfrak{m}/mathfrak{m}^{i+1}: p mapsto p + mathfrak{m}^{i+1}$.
Let $F:mathbb{N}^{op} longrightarrow mathcal{C}$ such that $F(i)=mathfrak{m}/mathfrak{m}^{i+1}$ and $F(igeq j)= mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$.
We want to check that $F(igeq j) circ phi_j=phi_i$:
$F(igeq j): mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}: p + mathfrak{m}^{i+1} mapsto p + mathfrak{m}^{j+1}$
$F(igeq j) circ phi_i: L longrightarrow p/mathfrak{m}^{j+1}: p mapsto p + mathfrak{m}^{j+1}$
$phi_j: L longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$
And this is $F(igeq j)circ phi_i =phi_j$.
Now we have to see that if there is a $(L',alpha)$ satisfying the same condition, then there exists a unique morphism $u:Llongrightarrow L'$ such that $phi circ u = alpha$. But I do not know how to check that.
I know I still need to prove that the right inverse limit is equal to $L$.
But how could I prove the fact mentioned above?
Thank you.
abstract-algebra commutative-algebra limits-colimits
abstract-algebra commutative-algebra limits-colimits
edited Jan 16 at 10:00
idriskameni
asked Jan 2 at 10:28
idriskameniidriskameni
585318
585318
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
In case someone come back to this post one day, I will answer what I found.
The equality does not hold.
$mathfrak{m}(varprojlim{R/mathfrak{m}^i})subset varprojlim{mathfrak{m}/mathfrak{m}^{i+1}} $
To see it, we can check that $$g(x_1,x_2,x_3,...)=sum_{n=1}^{infty} x_n^n$$ is not in $mathfrak{m}(varprojlim{R/mathfrak{m}^i})$. But it is in $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059315%2fequality-of-inverse-limits-in-r-kx-1-x-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In case someone come back to this post one day, I will answer what I found.
The equality does not hold.
$mathfrak{m}(varprojlim{R/mathfrak{m}^i})subset varprojlim{mathfrak{m}/mathfrak{m}^{i+1}} $
To see it, we can check that $$g(x_1,x_2,x_3,...)=sum_{n=1}^{infty} x_n^n$$ is not in $mathfrak{m}(varprojlim{R/mathfrak{m}^i})$. But it is in $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}$.
$endgroup$
add a comment |
$begingroup$
In case someone come back to this post one day, I will answer what I found.
The equality does not hold.
$mathfrak{m}(varprojlim{R/mathfrak{m}^i})subset varprojlim{mathfrak{m}/mathfrak{m}^{i+1}} $
To see it, we can check that $$g(x_1,x_2,x_3,...)=sum_{n=1}^{infty} x_n^n$$ is not in $mathfrak{m}(varprojlim{R/mathfrak{m}^i})$. But it is in $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}$.
$endgroup$
add a comment |
$begingroup$
In case someone come back to this post one day, I will answer what I found.
The equality does not hold.
$mathfrak{m}(varprojlim{R/mathfrak{m}^i})subset varprojlim{mathfrak{m}/mathfrak{m}^{i+1}} $
To see it, we can check that $$g(x_1,x_2,x_3,...)=sum_{n=1}^{infty} x_n^n$$ is not in $mathfrak{m}(varprojlim{R/mathfrak{m}^i})$. But it is in $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}$.
$endgroup$
In case someone come back to this post one day, I will answer what I found.
The equality does not hold.
$mathfrak{m}(varprojlim{R/mathfrak{m}^i})subset varprojlim{mathfrak{m}/mathfrak{m}^{i+1}} $
To see it, we can check that $$g(x_1,x_2,x_3,...)=sum_{n=1}^{infty} x_n^n$$ is not in $mathfrak{m}(varprojlim{R/mathfrak{m}^i})$. But it is in $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}$.
answered Jan 16 at 10:04
idriskameniidriskameni
585318
585318
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059315%2fequality-of-inverse-limits-in-r-kx-1-x-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown