equality of inverse limits in $R=k[x_1,x_2,…]$












1












$begingroup$


Let $k$ be a field, $R=k[x_1,x_2,x_3...]=k[x_i]_{mathbb{N}_0}$ and $mathfrak{m}=(x_1,x_2,x_3,...)$.



I want to check whether the following equality is true or not:




$varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$




I claim that this equality is true. And I claim




$varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}=L= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$, where $L={fin k[[x_i]]_{i in mathbb{N}_0} | f(0)=0}$




My try:



I define $phi_i: L longrightarrow mathfrak{m}/mathfrak{m}^{i+1}: p mapsto p + mathfrak{m}^{i+1}$.



Let $F:mathbb{N}^{op} longrightarrow mathcal{C}$ such that $F(i)=mathfrak{m}/mathfrak{m}^{i+1}$ and $F(igeq j)= mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$.



We want to check that $F(igeq j) circ phi_j=phi_i$:



$F(igeq j): mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}: p + mathfrak{m}^{i+1} mapsto p + mathfrak{m}^{j+1}$



$F(igeq j) circ phi_i: L longrightarrow p/mathfrak{m}^{j+1}: p mapsto p + mathfrak{m}^{j+1}$



$phi_j: L longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$



And this is $F(igeq j)circ phi_i =phi_j$.



Now we have to see that if there is a $(L',alpha)$ satisfying the same condition, then there exists a unique morphism $u:Llongrightarrow L'$ such that $phi circ u = alpha$. But I do not know how to check that.



I know I still need to prove that the right inverse limit is equal to $L$.



But how could I prove the fact mentioned above?



Thank you.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let $k$ be a field, $R=k[x_1,x_2,x_3...]=k[x_i]_{mathbb{N}_0}$ and $mathfrak{m}=(x_1,x_2,x_3,...)$.



    I want to check whether the following equality is true or not:




    $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$




    I claim that this equality is true. And I claim




    $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}=L= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$, where $L={fin k[[x_i]]_{i in mathbb{N}_0} | f(0)=0}$




    My try:



    I define $phi_i: L longrightarrow mathfrak{m}/mathfrak{m}^{i+1}: p mapsto p + mathfrak{m}^{i+1}$.



    Let $F:mathbb{N}^{op} longrightarrow mathcal{C}$ such that $F(i)=mathfrak{m}/mathfrak{m}^{i+1}$ and $F(igeq j)= mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$.



    We want to check that $F(igeq j) circ phi_j=phi_i$:



    $F(igeq j): mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}: p + mathfrak{m}^{i+1} mapsto p + mathfrak{m}^{j+1}$



    $F(igeq j) circ phi_i: L longrightarrow p/mathfrak{m}^{j+1}: p mapsto p + mathfrak{m}^{j+1}$



    $phi_j: L longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$



    And this is $F(igeq j)circ phi_i =phi_j$.



    Now we have to see that if there is a $(L',alpha)$ satisfying the same condition, then there exists a unique morphism $u:Llongrightarrow L'$ such that $phi circ u = alpha$. But I do not know how to check that.



    I know I still need to prove that the right inverse limit is equal to $L$.



    But how could I prove the fact mentioned above?



    Thank you.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let $k$ be a field, $R=k[x_1,x_2,x_3...]=k[x_i]_{mathbb{N}_0}$ and $mathfrak{m}=(x_1,x_2,x_3,...)$.



      I want to check whether the following equality is true or not:




      $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$




      I claim that this equality is true. And I claim




      $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}=L= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$, where $L={fin k[[x_i]]_{i in mathbb{N}_0} | f(0)=0}$




      My try:



      I define $phi_i: L longrightarrow mathfrak{m}/mathfrak{m}^{i+1}: p mapsto p + mathfrak{m}^{i+1}$.



      Let $F:mathbb{N}^{op} longrightarrow mathcal{C}$ such that $F(i)=mathfrak{m}/mathfrak{m}^{i+1}$ and $F(igeq j)= mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$.



      We want to check that $F(igeq j) circ phi_j=phi_i$:



      $F(igeq j): mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}: p + mathfrak{m}^{i+1} mapsto p + mathfrak{m}^{j+1}$



      $F(igeq j) circ phi_i: L longrightarrow p/mathfrak{m}^{j+1}: p mapsto p + mathfrak{m}^{j+1}$



      $phi_j: L longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$



      And this is $F(igeq j)circ phi_i =phi_j$.



      Now we have to see that if there is a $(L',alpha)$ satisfying the same condition, then there exists a unique morphism $u:Llongrightarrow L'$ such that $phi circ u = alpha$. But I do not know how to check that.



      I know I still need to prove that the right inverse limit is equal to $L$.



      But how could I prove the fact mentioned above?



      Thank you.










      share|cite|improve this question











      $endgroup$




      Let $k$ be a field, $R=k[x_1,x_2,x_3...]=k[x_i]_{mathbb{N}_0}$ and $mathfrak{m}=(x_1,x_2,x_3,...)$.



      I want to check whether the following equality is true or not:




      $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$




      I claim that this equality is true. And I claim




      $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}=L= mathfrak{m}(varprojlim{R/mathfrak{m}^i})$, where $L={fin k[[x_i]]_{i in mathbb{N}_0} | f(0)=0}$




      My try:



      I define $phi_i: L longrightarrow mathfrak{m}/mathfrak{m}^{i+1}: p mapsto p + mathfrak{m}^{i+1}$.



      Let $F:mathbb{N}^{op} longrightarrow mathcal{C}$ such that $F(i)=mathfrak{m}/mathfrak{m}^{i+1}$ and $F(igeq j)= mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$.



      We want to check that $F(igeq j) circ phi_j=phi_i$:



      $F(igeq j): mathfrak{m}/mathfrak{m}^{i+1} longrightarrow mathfrak{m}/mathfrak{m}^{j+1}: p + mathfrak{m}^{i+1} mapsto p + mathfrak{m}^{j+1}$



      $F(igeq j) circ phi_i: L longrightarrow p/mathfrak{m}^{j+1}: p mapsto p + mathfrak{m}^{j+1}$



      $phi_j: L longrightarrow mathfrak{m}/mathfrak{m}^{j+1}$



      And this is $F(igeq j)circ phi_i =phi_j$.



      Now we have to see that if there is a $(L',alpha)$ satisfying the same condition, then there exists a unique morphism $u:Llongrightarrow L'$ such that $phi circ u = alpha$. But I do not know how to check that.



      I know I still need to prove that the right inverse limit is equal to $L$.



      But how could I prove the fact mentioned above?



      Thank you.







      abstract-algebra commutative-algebra limits-colimits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 16 at 10:00







      idriskameni

















      asked Jan 2 at 10:28









      idriskameniidriskameni

      585318




      585318






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          In case someone come back to this post one day, I will answer what I found.



          The equality does not hold.



          $mathfrak{m}(varprojlim{R/mathfrak{m}^i})subset varprojlim{mathfrak{m}/mathfrak{m}^{i+1}} $



          To see it, we can check that $$g(x_1,x_2,x_3,...)=sum_{n=1}^{infty} x_n^n$$ is not in $mathfrak{m}(varprojlim{R/mathfrak{m}^i})$. But it is in $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059315%2fequality-of-inverse-limits-in-r-kx-1-x-2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            In case someone come back to this post one day, I will answer what I found.



            The equality does not hold.



            $mathfrak{m}(varprojlim{R/mathfrak{m}^i})subset varprojlim{mathfrak{m}/mathfrak{m}^{i+1}} $



            To see it, we can check that $$g(x_1,x_2,x_3,...)=sum_{n=1}^{infty} x_n^n$$ is not in $mathfrak{m}(varprojlim{R/mathfrak{m}^i})$. But it is in $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}$.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              In case someone come back to this post one day, I will answer what I found.



              The equality does not hold.



              $mathfrak{m}(varprojlim{R/mathfrak{m}^i})subset varprojlim{mathfrak{m}/mathfrak{m}^{i+1}} $



              To see it, we can check that $$g(x_1,x_2,x_3,...)=sum_{n=1}^{infty} x_n^n$$ is not in $mathfrak{m}(varprojlim{R/mathfrak{m}^i})$. But it is in $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}$.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                In case someone come back to this post one day, I will answer what I found.



                The equality does not hold.



                $mathfrak{m}(varprojlim{R/mathfrak{m}^i})subset varprojlim{mathfrak{m}/mathfrak{m}^{i+1}} $



                To see it, we can check that $$g(x_1,x_2,x_3,...)=sum_{n=1}^{infty} x_n^n$$ is not in $mathfrak{m}(varprojlim{R/mathfrak{m}^i})$. But it is in $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}$.






                share|cite|improve this answer









                $endgroup$



                In case someone come back to this post one day, I will answer what I found.



                The equality does not hold.



                $mathfrak{m}(varprojlim{R/mathfrak{m}^i})subset varprojlim{mathfrak{m}/mathfrak{m}^{i+1}} $



                To see it, we can check that $$g(x_1,x_2,x_3,...)=sum_{n=1}^{infty} x_n^n$$ is not in $mathfrak{m}(varprojlim{R/mathfrak{m}^i})$. But it is in $varprojlim{mathfrak{m}/mathfrak{m}^{i+1}}$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 16 at 10:04









                idriskameniidriskameni

                585318




                585318






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059315%2fequality-of-inverse-limits-in-r-kx-1-x-2%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    The Binding of Isaac: Rebirth/Afterbirth

                    What does “Dominus providebit” mean?