divergence in polar coordinates
$begingroup$
For a vector field $X$, the divergence in coordinates is given by $nablacdot X=sum_nfrac{X^i}{partial x^i}$. In polar coordinates, the metric is $begin{bmatrix}1 & 0\ 0 & r^2end{bmatrix}$, and so $frac{1}{sqrt{g(frac{partial}{partial r},frac{partial}{partial r})}}frac{partial}{partial r}=frac{partial}{partial r}$ and $frac{1}{sqrt{g(frac{partial}{partialtheta},frac{partial}{partialtheta})}}frac{partial}{partialtheta}=frac{1}{r}frac{partial}{partialtheta}$ are unit vectors. Then for $X=X_{r}frac{partial}{partial r}+X_{theta}frac{partial}{rpartialtheta}$, $nablacdot X=frac{partial X_r}{partial r}+frac{partial}{partialtheta}frac{X_{theta}}{r}=frac{partial X_r}{partial r}+frac{1}{r}frac{partial X_{theta}}{partialtheta}$. But this disagrees with the usual formula given in vector calculus books. Does anyone see the error?
differential-geometry vector-spaces
$endgroup$
add a comment |
$begingroup$
For a vector field $X$, the divergence in coordinates is given by $nablacdot X=sum_nfrac{X^i}{partial x^i}$. In polar coordinates, the metric is $begin{bmatrix}1 & 0\ 0 & r^2end{bmatrix}$, and so $frac{1}{sqrt{g(frac{partial}{partial r},frac{partial}{partial r})}}frac{partial}{partial r}=frac{partial}{partial r}$ and $frac{1}{sqrt{g(frac{partial}{partialtheta},frac{partial}{partialtheta})}}frac{partial}{partialtheta}=frac{1}{r}frac{partial}{partialtheta}$ are unit vectors. Then for $X=X_{r}frac{partial}{partial r}+X_{theta}frac{partial}{rpartialtheta}$, $nablacdot X=frac{partial X_r}{partial r}+frac{partial}{partialtheta}frac{X_{theta}}{r}=frac{partial X_r}{partial r}+frac{1}{r}frac{partial X_{theta}}{partialtheta}$. But this disagrees with the usual formula given in vector calculus books. Does anyone see the error?
differential-geometry vector-spaces
$endgroup$
add a comment |
$begingroup$
For a vector field $X$, the divergence in coordinates is given by $nablacdot X=sum_nfrac{X^i}{partial x^i}$. In polar coordinates, the metric is $begin{bmatrix}1 & 0\ 0 & r^2end{bmatrix}$, and so $frac{1}{sqrt{g(frac{partial}{partial r},frac{partial}{partial r})}}frac{partial}{partial r}=frac{partial}{partial r}$ and $frac{1}{sqrt{g(frac{partial}{partialtheta},frac{partial}{partialtheta})}}frac{partial}{partialtheta}=frac{1}{r}frac{partial}{partialtheta}$ are unit vectors. Then for $X=X_{r}frac{partial}{partial r}+X_{theta}frac{partial}{rpartialtheta}$, $nablacdot X=frac{partial X_r}{partial r}+frac{partial}{partialtheta}frac{X_{theta}}{r}=frac{partial X_r}{partial r}+frac{1}{r}frac{partial X_{theta}}{partialtheta}$. But this disagrees with the usual formula given in vector calculus books. Does anyone see the error?
differential-geometry vector-spaces
$endgroup$
For a vector field $X$, the divergence in coordinates is given by $nablacdot X=sum_nfrac{X^i}{partial x^i}$. In polar coordinates, the metric is $begin{bmatrix}1 & 0\ 0 & r^2end{bmatrix}$, and so $frac{1}{sqrt{g(frac{partial}{partial r},frac{partial}{partial r})}}frac{partial}{partial r}=frac{partial}{partial r}$ and $frac{1}{sqrt{g(frac{partial}{partialtheta},frac{partial}{partialtheta})}}frac{partial}{partialtheta}=frac{1}{r}frac{partial}{partialtheta}$ are unit vectors. Then for $X=X_{r}frac{partial}{partial r}+X_{theta}frac{partial}{rpartialtheta}$, $nablacdot X=frac{partial X_r}{partial r}+frac{partial}{partialtheta}frac{X_{theta}}{r}=frac{partial X_r}{partial r}+frac{1}{r}frac{partial X_{theta}}{partialtheta}$. But this disagrees with the usual formula given in vector calculus books. Does anyone see the error?
differential-geometry vector-spaces
differential-geometry vector-spaces
edited Dec 18 '18 at 2:31
user124910
asked Dec 18 '18 at 0:27
user124910user124910
1,300816
1,300816
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$DeclareMathOperatordiv{div}$The formula for $nablacdot X$ is incorrect. The notation with the 'usual' dot product is misleading. Properly it is for a diagonal metric:
$$div F = frac 1rhofrac{partial(rho F^i)}{partial x^i}$$
where $rho=sqrt{det g}$ is the coefficient of the differential volume element $dV=rho, dx^1wedgeldots wedge dx^n$, meaning $rho$ is also the Jacobian determinant, and where $F^i$ are the components of $F$ with respect to an unnormalized basis.
In polar coordinates we have $rho=sqrt{det g}=r$, and:
$$div X = frac 1r frac{partial(r X^r)}{partial r}
+ frac 1rfrac{partial(r X^theta)}{partial theta}$$
In the usual normalized coordinates $X=hat X^{r}frac{partial}{partial r} + hat X^{theta}frac 1rfrac{partial}{partialtheta}$ this becomes:
$$div X = frac 1r frac{partial(r hat X^{r})}{partial r}
+ frac 1rfrac{partial hat X^{theta}}{partial theta}$$
which agrees with the usual formula given in calculus books.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044642%2fdivergence-in-polar-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$DeclareMathOperatordiv{div}$The formula for $nablacdot X$ is incorrect. The notation with the 'usual' dot product is misleading. Properly it is for a diagonal metric:
$$div F = frac 1rhofrac{partial(rho F^i)}{partial x^i}$$
where $rho=sqrt{det g}$ is the coefficient of the differential volume element $dV=rho, dx^1wedgeldots wedge dx^n$, meaning $rho$ is also the Jacobian determinant, and where $F^i$ are the components of $F$ with respect to an unnormalized basis.
In polar coordinates we have $rho=sqrt{det g}=r$, and:
$$div X = frac 1r frac{partial(r X^r)}{partial r}
+ frac 1rfrac{partial(r X^theta)}{partial theta}$$
In the usual normalized coordinates $X=hat X^{r}frac{partial}{partial r} + hat X^{theta}frac 1rfrac{partial}{partialtheta}$ this becomes:
$$div X = frac 1r frac{partial(r hat X^{r})}{partial r}
+ frac 1rfrac{partial hat X^{theta}}{partial theta}$$
which agrees with the usual formula given in calculus books.
$endgroup$
add a comment |
$begingroup$
$DeclareMathOperatordiv{div}$The formula for $nablacdot X$ is incorrect. The notation with the 'usual' dot product is misleading. Properly it is for a diagonal metric:
$$div F = frac 1rhofrac{partial(rho F^i)}{partial x^i}$$
where $rho=sqrt{det g}$ is the coefficient of the differential volume element $dV=rho, dx^1wedgeldots wedge dx^n$, meaning $rho$ is also the Jacobian determinant, and where $F^i$ are the components of $F$ with respect to an unnormalized basis.
In polar coordinates we have $rho=sqrt{det g}=r$, and:
$$div X = frac 1r frac{partial(r X^r)}{partial r}
+ frac 1rfrac{partial(r X^theta)}{partial theta}$$
In the usual normalized coordinates $X=hat X^{r}frac{partial}{partial r} + hat X^{theta}frac 1rfrac{partial}{partialtheta}$ this becomes:
$$div X = frac 1r frac{partial(r hat X^{r})}{partial r}
+ frac 1rfrac{partial hat X^{theta}}{partial theta}$$
which agrees with the usual formula given in calculus books.
$endgroup$
add a comment |
$begingroup$
$DeclareMathOperatordiv{div}$The formula for $nablacdot X$ is incorrect. The notation with the 'usual' dot product is misleading. Properly it is for a diagonal metric:
$$div F = frac 1rhofrac{partial(rho F^i)}{partial x^i}$$
where $rho=sqrt{det g}$ is the coefficient of the differential volume element $dV=rho, dx^1wedgeldots wedge dx^n$, meaning $rho$ is also the Jacobian determinant, and where $F^i$ are the components of $F$ with respect to an unnormalized basis.
In polar coordinates we have $rho=sqrt{det g}=r$, and:
$$div X = frac 1r frac{partial(r X^r)}{partial r}
+ frac 1rfrac{partial(r X^theta)}{partial theta}$$
In the usual normalized coordinates $X=hat X^{r}frac{partial}{partial r} + hat X^{theta}frac 1rfrac{partial}{partialtheta}$ this becomes:
$$div X = frac 1r frac{partial(r hat X^{r})}{partial r}
+ frac 1rfrac{partial hat X^{theta}}{partial theta}$$
which agrees with the usual formula given in calculus books.
$endgroup$
$DeclareMathOperatordiv{div}$The formula for $nablacdot X$ is incorrect. The notation with the 'usual' dot product is misleading. Properly it is for a diagonal metric:
$$div F = frac 1rhofrac{partial(rho F^i)}{partial x^i}$$
where $rho=sqrt{det g}$ is the coefficient of the differential volume element $dV=rho, dx^1wedgeldots wedge dx^n$, meaning $rho$ is also the Jacobian determinant, and where $F^i$ are the components of $F$ with respect to an unnormalized basis.
In polar coordinates we have $rho=sqrt{det g}=r$, and:
$$div X = frac 1r frac{partial(r X^r)}{partial r}
+ frac 1rfrac{partial(r X^theta)}{partial theta}$$
In the usual normalized coordinates $X=hat X^{r}frac{partial}{partial r} + hat X^{theta}frac 1rfrac{partial}{partialtheta}$ this becomes:
$$div X = frac 1r frac{partial(r hat X^{r})}{partial r}
+ frac 1rfrac{partial hat X^{theta}}{partial theta}$$
which agrees with the usual formula given in calculus books.
edited Jan 16 at 8:59
answered Dec 31 '18 at 20:10
I like SerenaI like Serena
4,1671722
4,1671722
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044642%2fdivergence-in-polar-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown