divergence in polar coordinates












4












$begingroup$


For a vector field $X$, the divergence in coordinates is given by $nablacdot X=sum_nfrac{X^i}{partial x^i}$. In polar coordinates, the metric is $begin{bmatrix}1 & 0\ 0 & r^2end{bmatrix}$, and so $frac{1}{sqrt{g(frac{partial}{partial r},frac{partial}{partial r})}}frac{partial}{partial r}=frac{partial}{partial r}$ and $frac{1}{sqrt{g(frac{partial}{partialtheta},frac{partial}{partialtheta})}}frac{partial}{partialtheta}=frac{1}{r}frac{partial}{partialtheta}$ are unit vectors. Then for $X=X_{r}frac{partial}{partial r}+X_{theta}frac{partial}{rpartialtheta}$, $nablacdot X=frac{partial X_r}{partial r}+frac{partial}{partialtheta}frac{X_{theta}}{r}=frac{partial X_r}{partial r}+frac{1}{r}frac{partial X_{theta}}{partialtheta}$. But this disagrees with the usual formula given in vector calculus books. Does anyone see the error?










share|cite|improve this question











$endgroup$

















    4












    $begingroup$


    For a vector field $X$, the divergence in coordinates is given by $nablacdot X=sum_nfrac{X^i}{partial x^i}$. In polar coordinates, the metric is $begin{bmatrix}1 & 0\ 0 & r^2end{bmatrix}$, and so $frac{1}{sqrt{g(frac{partial}{partial r},frac{partial}{partial r})}}frac{partial}{partial r}=frac{partial}{partial r}$ and $frac{1}{sqrt{g(frac{partial}{partialtheta},frac{partial}{partialtheta})}}frac{partial}{partialtheta}=frac{1}{r}frac{partial}{partialtheta}$ are unit vectors. Then for $X=X_{r}frac{partial}{partial r}+X_{theta}frac{partial}{rpartialtheta}$, $nablacdot X=frac{partial X_r}{partial r}+frac{partial}{partialtheta}frac{X_{theta}}{r}=frac{partial X_r}{partial r}+frac{1}{r}frac{partial X_{theta}}{partialtheta}$. But this disagrees with the usual formula given in vector calculus books. Does anyone see the error?










    share|cite|improve this question











    $endgroup$















      4












      4








      4


      0



      $begingroup$


      For a vector field $X$, the divergence in coordinates is given by $nablacdot X=sum_nfrac{X^i}{partial x^i}$. In polar coordinates, the metric is $begin{bmatrix}1 & 0\ 0 & r^2end{bmatrix}$, and so $frac{1}{sqrt{g(frac{partial}{partial r},frac{partial}{partial r})}}frac{partial}{partial r}=frac{partial}{partial r}$ and $frac{1}{sqrt{g(frac{partial}{partialtheta},frac{partial}{partialtheta})}}frac{partial}{partialtheta}=frac{1}{r}frac{partial}{partialtheta}$ are unit vectors. Then for $X=X_{r}frac{partial}{partial r}+X_{theta}frac{partial}{rpartialtheta}$, $nablacdot X=frac{partial X_r}{partial r}+frac{partial}{partialtheta}frac{X_{theta}}{r}=frac{partial X_r}{partial r}+frac{1}{r}frac{partial X_{theta}}{partialtheta}$. But this disagrees with the usual formula given in vector calculus books. Does anyone see the error?










      share|cite|improve this question











      $endgroup$




      For a vector field $X$, the divergence in coordinates is given by $nablacdot X=sum_nfrac{X^i}{partial x^i}$. In polar coordinates, the metric is $begin{bmatrix}1 & 0\ 0 & r^2end{bmatrix}$, and so $frac{1}{sqrt{g(frac{partial}{partial r},frac{partial}{partial r})}}frac{partial}{partial r}=frac{partial}{partial r}$ and $frac{1}{sqrt{g(frac{partial}{partialtheta},frac{partial}{partialtheta})}}frac{partial}{partialtheta}=frac{1}{r}frac{partial}{partialtheta}$ are unit vectors. Then for $X=X_{r}frac{partial}{partial r}+X_{theta}frac{partial}{rpartialtheta}$, $nablacdot X=frac{partial X_r}{partial r}+frac{partial}{partialtheta}frac{X_{theta}}{r}=frac{partial X_r}{partial r}+frac{1}{r}frac{partial X_{theta}}{partialtheta}$. But this disagrees with the usual formula given in vector calculus books. Does anyone see the error?







      differential-geometry vector-spaces






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 18 '18 at 2:31







      user124910

















      asked Dec 18 '18 at 0:27









      user124910user124910

      1,300816




      1,300816






















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          $DeclareMathOperatordiv{div}$The formula for $nablacdot X$ is incorrect. The notation with the 'usual' dot product is misleading. Properly it is for a diagonal metric:
          $$div F = frac 1rhofrac{partial(rho F^i)}{partial x^i}$$
          where $rho=sqrt{det g}$ is the coefficient of the differential volume element $dV=rho, dx^1wedgeldots wedge dx^n$, meaning $rho$ is also the Jacobian determinant, and where $F^i$ are the components of $F$ with respect to an unnormalized basis.



          In polar coordinates we have $rho=sqrt{det g}=r$, and:
          $$div X = frac 1r frac{partial(r X^r)}{partial r}
          + frac 1rfrac{partial(r X^theta)}{partial theta}$$



          In the usual normalized coordinates $X=hat X^{r}frac{partial}{partial r} + hat X^{theta}frac 1rfrac{partial}{partialtheta}$ this becomes:
          $$div X = frac 1r frac{partial(r hat X^{r})}{partial r}
          + frac 1rfrac{partial hat X^{theta}}{partial theta}$$

          which agrees with the usual formula given in calculus books.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044642%2fdivergence-in-polar-coordinates%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            $DeclareMathOperatordiv{div}$The formula for $nablacdot X$ is incorrect. The notation with the 'usual' dot product is misleading. Properly it is for a diagonal metric:
            $$div F = frac 1rhofrac{partial(rho F^i)}{partial x^i}$$
            where $rho=sqrt{det g}$ is the coefficient of the differential volume element $dV=rho, dx^1wedgeldots wedge dx^n$, meaning $rho$ is also the Jacobian determinant, and where $F^i$ are the components of $F$ with respect to an unnormalized basis.



            In polar coordinates we have $rho=sqrt{det g}=r$, and:
            $$div X = frac 1r frac{partial(r X^r)}{partial r}
            + frac 1rfrac{partial(r X^theta)}{partial theta}$$



            In the usual normalized coordinates $X=hat X^{r}frac{partial}{partial r} + hat X^{theta}frac 1rfrac{partial}{partialtheta}$ this becomes:
            $$div X = frac 1r frac{partial(r hat X^{r})}{partial r}
            + frac 1rfrac{partial hat X^{theta}}{partial theta}$$

            which agrees with the usual formula given in calculus books.






            share|cite|improve this answer











            $endgroup$


















              4












              $begingroup$

              $DeclareMathOperatordiv{div}$The formula for $nablacdot X$ is incorrect. The notation with the 'usual' dot product is misleading. Properly it is for a diagonal metric:
              $$div F = frac 1rhofrac{partial(rho F^i)}{partial x^i}$$
              where $rho=sqrt{det g}$ is the coefficient of the differential volume element $dV=rho, dx^1wedgeldots wedge dx^n$, meaning $rho$ is also the Jacobian determinant, and where $F^i$ are the components of $F$ with respect to an unnormalized basis.



              In polar coordinates we have $rho=sqrt{det g}=r$, and:
              $$div X = frac 1r frac{partial(r X^r)}{partial r}
              + frac 1rfrac{partial(r X^theta)}{partial theta}$$



              In the usual normalized coordinates $X=hat X^{r}frac{partial}{partial r} + hat X^{theta}frac 1rfrac{partial}{partialtheta}$ this becomes:
              $$div X = frac 1r frac{partial(r hat X^{r})}{partial r}
              + frac 1rfrac{partial hat X^{theta}}{partial theta}$$

              which agrees with the usual formula given in calculus books.






              share|cite|improve this answer











              $endgroup$
















                4












                4








                4





                $begingroup$

                $DeclareMathOperatordiv{div}$The formula for $nablacdot X$ is incorrect. The notation with the 'usual' dot product is misleading. Properly it is for a diagonal metric:
                $$div F = frac 1rhofrac{partial(rho F^i)}{partial x^i}$$
                where $rho=sqrt{det g}$ is the coefficient of the differential volume element $dV=rho, dx^1wedgeldots wedge dx^n$, meaning $rho$ is also the Jacobian determinant, and where $F^i$ are the components of $F$ with respect to an unnormalized basis.



                In polar coordinates we have $rho=sqrt{det g}=r$, and:
                $$div X = frac 1r frac{partial(r X^r)}{partial r}
                + frac 1rfrac{partial(r X^theta)}{partial theta}$$



                In the usual normalized coordinates $X=hat X^{r}frac{partial}{partial r} + hat X^{theta}frac 1rfrac{partial}{partialtheta}$ this becomes:
                $$div X = frac 1r frac{partial(r hat X^{r})}{partial r}
                + frac 1rfrac{partial hat X^{theta}}{partial theta}$$

                which agrees with the usual formula given in calculus books.






                share|cite|improve this answer











                $endgroup$



                $DeclareMathOperatordiv{div}$The formula for $nablacdot X$ is incorrect. The notation with the 'usual' dot product is misleading. Properly it is for a diagonal metric:
                $$div F = frac 1rhofrac{partial(rho F^i)}{partial x^i}$$
                where $rho=sqrt{det g}$ is the coefficient of the differential volume element $dV=rho, dx^1wedgeldots wedge dx^n$, meaning $rho$ is also the Jacobian determinant, and where $F^i$ are the components of $F$ with respect to an unnormalized basis.



                In polar coordinates we have $rho=sqrt{det g}=r$, and:
                $$div X = frac 1r frac{partial(r X^r)}{partial r}
                + frac 1rfrac{partial(r X^theta)}{partial theta}$$



                In the usual normalized coordinates $X=hat X^{r}frac{partial}{partial r} + hat X^{theta}frac 1rfrac{partial}{partialtheta}$ this becomes:
                $$div X = frac 1r frac{partial(r hat X^{r})}{partial r}
                + frac 1rfrac{partial hat X^{theta}}{partial theta}$$

                which agrees with the usual formula given in calculus books.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 16 at 8:59

























                answered Dec 31 '18 at 20:10









                I like SerenaI like Serena

                4,1671722




                4,1671722






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044642%2fdivergence-in-polar-coordinates%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    The Binding of Isaac: Rebirth/Afterbirth

                    What does “Dominus providebit” mean?