Finding constant from probability mass function












0












$begingroup$


Let $X$ be a discrete random variable with probability distribution (probability mass function),



$P(x) = c(frac{1}{3})^x, x = 0,1,2,...$





a) Find $c$ such that $P(x)$ is a legitimate PDF.



b) Find the CDF of $X$, $F(x), x ∈ {0,1,2,...}$





b) Here I was thinking of using this formula:



$sum_{k = 1}^x P(k)$



So,



$sum_{k = 0}^x c(frac{1}{3})^k = sum_{k = 1}^x c(frac{1}{3})^{x - 1}$



$= cfrac{(1 - frac{1}{3}^x)}{1 - frac{1}{3}}$



Does it even make sense?



I'm stuck on a)










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $X$ be a discrete random variable with probability distribution (probability mass function),



    $P(x) = c(frac{1}{3})^x, x = 0,1,2,...$





    a) Find $c$ such that $P(x)$ is a legitimate PDF.



    b) Find the CDF of $X$, $F(x), x ∈ {0,1,2,...}$





    b) Here I was thinking of using this formula:



    $sum_{k = 1}^x P(k)$



    So,



    $sum_{k = 0}^x c(frac{1}{3})^k = sum_{k = 1}^x c(frac{1}{3})^{x - 1}$



    $= cfrac{(1 - frac{1}{3}^x)}{1 - frac{1}{3}}$



    Does it even make sense?



    I'm stuck on a)










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $X$ be a discrete random variable with probability distribution (probability mass function),



      $P(x) = c(frac{1}{3})^x, x = 0,1,2,...$





      a) Find $c$ such that $P(x)$ is a legitimate PDF.



      b) Find the CDF of $X$, $F(x), x ∈ {0,1,2,...}$





      b) Here I was thinking of using this formula:



      $sum_{k = 1}^x P(k)$



      So,



      $sum_{k = 0}^x c(frac{1}{3})^k = sum_{k = 1}^x c(frac{1}{3})^{x - 1}$



      $= cfrac{(1 - frac{1}{3}^x)}{1 - frac{1}{3}}$



      Does it even make sense?



      I'm stuck on a)










      share|cite|improve this question









      $endgroup$




      Let $X$ be a discrete random variable with probability distribution (probability mass function),



      $P(x) = c(frac{1}{3})^x, x = 0,1,2,...$





      a) Find $c$ such that $P(x)$ is a legitimate PDF.



      b) Find the CDF of $X$, $F(x), x ∈ {0,1,2,...}$





      b) Here I was thinking of using this formula:



      $sum_{k = 1}^x P(k)$



      So,



      $sum_{k = 0}^x c(frac{1}{3})^k = sum_{k = 1}^x c(frac{1}{3})^{x - 1}$



      $= cfrac{(1 - frac{1}{3}^x)}{1 - frac{1}{3}}$



      Does it even make sense?



      I'm stuck on a)







      probability functions random-variables






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Oct 3 '17 at 19:34









      HelloHello

      1591317




      1591317






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          To find $c$ we must have
          $$
          sum_{x=0}^{infty}P(x)=1quadLongrightarrow quadsum_{x=0}^{infty}cleft(frac 13right)^x=cfrac32=1quadLongrightarrow quad c=frac23
          $$



          For b) we have



          $$
          F(x)=sum_{k=0}^{x}P(x)=frac23sum_{k=0}^{x}left(frac 13right)^k=1-frac{1}{3^{x+1}}qquad text{for};x=0,1,2,ldots
          $$
          and $0$ elsewhere.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            How do you go from $sum_{x=0}^{infty}cleft(frac 13right)^x$ to $cfrac32$?
            $endgroup$
            – Hello
            Oct 3 '17 at 19:44






          • 1




            $begingroup$
            This is a geometric series: $sum_{k=0}^infty r^k=frac{1}{1-r}$ for $|r|<1$
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:45












          • $begingroup$
            I know that. I'm just a little confused as to how to plug in infinity
            $endgroup$
            – Hello
            Oct 3 '17 at 19:48










          • $begingroup$
            For $r=frac 13$ you have $sum_{k=0}^{infty}c(1/3)^k=csum_{k=0}^{infty}(1/3)^k=frac{c}{1-frac 13}=frac{c}{frac 23}=1$ and then $c=frac 23$.
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:51












          • $begingroup$
            The partial sum is $sum_{k=0}^{n}r^k=frac{1-r^{n+1}}{1-r}$ and taking the limit for $ntoinfty$ with $|r|<1$, $r^{n+1}to 0$ and then $$sum_{k=0}^{infty}r^k=lim_{ntoinfty}sum_{k=0}^{n}r^k=lim_{ntoinfty}frac{1-r^{n+1}}{1-r}=frac{1}{1-r}qquad |r|<1$$
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:56













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2456273%2ffinding-constant-from-probability-mass-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          To find $c$ we must have
          $$
          sum_{x=0}^{infty}P(x)=1quadLongrightarrow quadsum_{x=0}^{infty}cleft(frac 13right)^x=cfrac32=1quadLongrightarrow quad c=frac23
          $$



          For b) we have



          $$
          F(x)=sum_{k=0}^{x}P(x)=frac23sum_{k=0}^{x}left(frac 13right)^k=1-frac{1}{3^{x+1}}qquad text{for};x=0,1,2,ldots
          $$
          and $0$ elsewhere.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            How do you go from $sum_{x=0}^{infty}cleft(frac 13right)^x$ to $cfrac32$?
            $endgroup$
            – Hello
            Oct 3 '17 at 19:44






          • 1




            $begingroup$
            This is a geometric series: $sum_{k=0}^infty r^k=frac{1}{1-r}$ for $|r|<1$
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:45












          • $begingroup$
            I know that. I'm just a little confused as to how to plug in infinity
            $endgroup$
            – Hello
            Oct 3 '17 at 19:48










          • $begingroup$
            For $r=frac 13$ you have $sum_{k=0}^{infty}c(1/3)^k=csum_{k=0}^{infty}(1/3)^k=frac{c}{1-frac 13}=frac{c}{frac 23}=1$ and then $c=frac 23$.
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:51












          • $begingroup$
            The partial sum is $sum_{k=0}^{n}r^k=frac{1-r^{n+1}}{1-r}$ and taking the limit for $ntoinfty$ with $|r|<1$, $r^{n+1}to 0$ and then $$sum_{k=0}^{infty}r^k=lim_{ntoinfty}sum_{k=0}^{n}r^k=lim_{ntoinfty}frac{1-r^{n+1}}{1-r}=frac{1}{1-r}qquad |r|<1$$
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:56


















          0












          $begingroup$

          To find $c$ we must have
          $$
          sum_{x=0}^{infty}P(x)=1quadLongrightarrow quadsum_{x=0}^{infty}cleft(frac 13right)^x=cfrac32=1quadLongrightarrow quad c=frac23
          $$



          For b) we have



          $$
          F(x)=sum_{k=0}^{x}P(x)=frac23sum_{k=0}^{x}left(frac 13right)^k=1-frac{1}{3^{x+1}}qquad text{for};x=0,1,2,ldots
          $$
          and $0$ elsewhere.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            How do you go from $sum_{x=0}^{infty}cleft(frac 13right)^x$ to $cfrac32$?
            $endgroup$
            – Hello
            Oct 3 '17 at 19:44






          • 1




            $begingroup$
            This is a geometric series: $sum_{k=0}^infty r^k=frac{1}{1-r}$ for $|r|<1$
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:45












          • $begingroup$
            I know that. I'm just a little confused as to how to plug in infinity
            $endgroup$
            – Hello
            Oct 3 '17 at 19:48










          • $begingroup$
            For $r=frac 13$ you have $sum_{k=0}^{infty}c(1/3)^k=csum_{k=0}^{infty}(1/3)^k=frac{c}{1-frac 13}=frac{c}{frac 23}=1$ and then $c=frac 23$.
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:51












          • $begingroup$
            The partial sum is $sum_{k=0}^{n}r^k=frac{1-r^{n+1}}{1-r}$ and taking the limit for $ntoinfty$ with $|r|<1$, $r^{n+1}to 0$ and then $$sum_{k=0}^{infty}r^k=lim_{ntoinfty}sum_{k=0}^{n}r^k=lim_{ntoinfty}frac{1-r^{n+1}}{1-r}=frac{1}{1-r}qquad |r|<1$$
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:56
















          0












          0








          0





          $begingroup$

          To find $c$ we must have
          $$
          sum_{x=0}^{infty}P(x)=1quadLongrightarrow quadsum_{x=0}^{infty}cleft(frac 13right)^x=cfrac32=1quadLongrightarrow quad c=frac23
          $$



          For b) we have



          $$
          F(x)=sum_{k=0}^{x}P(x)=frac23sum_{k=0}^{x}left(frac 13right)^k=1-frac{1}{3^{x+1}}qquad text{for};x=0,1,2,ldots
          $$
          and $0$ elsewhere.






          share|cite|improve this answer











          $endgroup$



          To find $c$ we must have
          $$
          sum_{x=0}^{infty}P(x)=1quadLongrightarrow quadsum_{x=0}^{infty}cleft(frac 13right)^x=cfrac32=1quadLongrightarrow quad c=frac23
          $$



          For b) we have



          $$
          F(x)=sum_{k=0}^{x}P(x)=frac23sum_{k=0}^{x}left(frac 13right)^k=1-frac{1}{3^{x+1}}qquad text{for};x=0,1,2,ldots
          $$
          and $0$ elsewhere.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Oct 3 '17 at 20:08

























          answered Oct 3 '17 at 19:38









          alexjoalexjo

          12.4k1430




          12.4k1430












          • $begingroup$
            How do you go from $sum_{x=0}^{infty}cleft(frac 13right)^x$ to $cfrac32$?
            $endgroup$
            – Hello
            Oct 3 '17 at 19:44






          • 1




            $begingroup$
            This is a geometric series: $sum_{k=0}^infty r^k=frac{1}{1-r}$ for $|r|<1$
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:45












          • $begingroup$
            I know that. I'm just a little confused as to how to plug in infinity
            $endgroup$
            – Hello
            Oct 3 '17 at 19:48










          • $begingroup$
            For $r=frac 13$ you have $sum_{k=0}^{infty}c(1/3)^k=csum_{k=0}^{infty}(1/3)^k=frac{c}{1-frac 13}=frac{c}{frac 23}=1$ and then $c=frac 23$.
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:51












          • $begingroup$
            The partial sum is $sum_{k=0}^{n}r^k=frac{1-r^{n+1}}{1-r}$ and taking the limit for $ntoinfty$ with $|r|<1$, $r^{n+1}to 0$ and then $$sum_{k=0}^{infty}r^k=lim_{ntoinfty}sum_{k=0}^{n}r^k=lim_{ntoinfty}frac{1-r^{n+1}}{1-r}=frac{1}{1-r}qquad |r|<1$$
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:56




















          • $begingroup$
            How do you go from $sum_{x=0}^{infty}cleft(frac 13right)^x$ to $cfrac32$?
            $endgroup$
            – Hello
            Oct 3 '17 at 19:44






          • 1




            $begingroup$
            This is a geometric series: $sum_{k=0}^infty r^k=frac{1}{1-r}$ for $|r|<1$
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:45












          • $begingroup$
            I know that. I'm just a little confused as to how to plug in infinity
            $endgroup$
            – Hello
            Oct 3 '17 at 19:48










          • $begingroup$
            For $r=frac 13$ you have $sum_{k=0}^{infty}c(1/3)^k=csum_{k=0}^{infty}(1/3)^k=frac{c}{1-frac 13}=frac{c}{frac 23}=1$ and then $c=frac 23$.
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:51












          • $begingroup$
            The partial sum is $sum_{k=0}^{n}r^k=frac{1-r^{n+1}}{1-r}$ and taking the limit for $ntoinfty$ with $|r|<1$, $r^{n+1}to 0$ and then $$sum_{k=0}^{infty}r^k=lim_{ntoinfty}sum_{k=0}^{n}r^k=lim_{ntoinfty}frac{1-r^{n+1}}{1-r}=frac{1}{1-r}qquad |r|<1$$
            $endgroup$
            – alexjo
            Oct 3 '17 at 19:56


















          $begingroup$
          How do you go from $sum_{x=0}^{infty}cleft(frac 13right)^x$ to $cfrac32$?
          $endgroup$
          – Hello
          Oct 3 '17 at 19:44




          $begingroup$
          How do you go from $sum_{x=0}^{infty}cleft(frac 13right)^x$ to $cfrac32$?
          $endgroup$
          – Hello
          Oct 3 '17 at 19:44




          1




          1




          $begingroup$
          This is a geometric series: $sum_{k=0}^infty r^k=frac{1}{1-r}$ for $|r|<1$
          $endgroup$
          – alexjo
          Oct 3 '17 at 19:45






          $begingroup$
          This is a geometric series: $sum_{k=0}^infty r^k=frac{1}{1-r}$ for $|r|<1$
          $endgroup$
          – alexjo
          Oct 3 '17 at 19:45














          $begingroup$
          I know that. I'm just a little confused as to how to plug in infinity
          $endgroup$
          – Hello
          Oct 3 '17 at 19:48




          $begingroup$
          I know that. I'm just a little confused as to how to plug in infinity
          $endgroup$
          – Hello
          Oct 3 '17 at 19:48












          $begingroup$
          For $r=frac 13$ you have $sum_{k=0}^{infty}c(1/3)^k=csum_{k=0}^{infty}(1/3)^k=frac{c}{1-frac 13}=frac{c}{frac 23}=1$ and then $c=frac 23$.
          $endgroup$
          – alexjo
          Oct 3 '17 at 19:51






          $begingroup$
          For $r=frac 13$ you have $sum_{k=0}^{infty}c(1/3)^k=csum_{k=0}^{infty}(1/3)^k=frac{c}{1-frac 13}=frac{c}{frac 23}=1$ and then $c=frac 23$.
          $endgroup$
          – alexjo
          Oct 3 '17 at 19:51














          $begingroup$
          The partial sum is $sum_{k=0}^{n}r^k=frac{1-r^{n+1}}{1-r}$ and taking the limit for $ntoinfty$ with $|r|<1$, $r^{n+1}to 0$ and then $$sum_{k=0}^{infty}r^k=lim_{ntoinfty}sum_{k=0}^{n}r^k=lim_{ntoinfty}frac{1-r^{n+1}}{1-r}=frac{1}{1-r}qquad |r|<1$$
          $endgroup$
          – alexjo
          Oct 3 '17 at 19:56






          $begingroup$
          The partial sum is $sum_{k=0}^{n}r^k=frac{1-r^{n+1}}{1-r}$ and taking the limit for $ntoinfty$ with $|r|<1$, $r^{n+1}to 0$ and then $$sum_{k=0}^{infty}r^k=lim_{ntoinfty}sum_{k=0}^{n}r^k=lim_{ntoinfty}frac{1-r^{n+1}}{1-r}=frac{1}{1-r}qquad |r|<1$$
          $endgroup$
          – alexjo
          Oct 3 '17 at 19:56




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2456273%2ffinding-constant-from-probability-mass-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          What does “Dominus providebit” mean?

          Antonio Litta Visconti Arese