Syntax Explanation - Tranpose of Dot Product

Multi tool use
$begingroup$
On page 29 of https://arxiv.org/pdf/1802.01528.pdf there is syntax that I find confusing:
What does the syntax [wT, b]T mean? Is this a 2 dimensional matrix formed from a horizontal row w (transposed from column) and a column of b, all transposed? What is the final shape? Same question for x hat.
Last, how does w.x+b then become w hat . x hat?
linear-algebra vectors matrix-calculus
$endgroup$
add a comment |
$begingroup$
On page 29 of https://arxiv.org/pdf/1802.01528.pdf there is syntax that I find confusing:
What does the syntax [wT, b]T mean? Is this a 2 dimensional matrix formed from a horizontal row w (transposed from column) and a column of b, all transposed? What is the final shape? Same question for x hat.
Last, how does w.x+b then become w hat . x hat?
linear-algebra vectors matrix-calculus
$endgroup$
add a comment |
$begingroup$
On page 29 of https://arxiv.org/pdf/1802.01528.pdf there is syntax that I find confusing:
What does the syntax [wT, b]T mean? Is this a 2 dimensional matrix formed from a horizontal row w (transposed from column) and a column of b, all transposed? What is the final shape? Same question for x hat.
Last, how does w.x+b then become w hat . x hat?
linear-algebra vectors matrix-calculus
$endgroup$
On page 29 of https://arxiv.org/pdf/1802.01528.pdf there is syntax that I find confusing:
What does the syntax [wT, b]T mean? Is this a 2 dimensional matrix formed from a horizontal row w (transposed from column) and a column of b, all transposed? What is the final shape? Same question for x hat.
Last, how does w.x+b then become w hat . x hat?
linear-algebra vectors matrix-calculus
linear-algebra vectors matrix-calculus
asked Jan 11 at 21:54
Matthew ArthurMatthew Arthur
183
183
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If $mathbf{w} = begin{bmatrix}w_1 \ w_2 \ vdots \ w_nend{bmatrix}$ then
$$hat{mathbf{w}} = begin{bmatrix}w_1 \ w_2 \ vdots \ w_n \ b end{bmatrix}.$$
Similarly
$$hat{mathbf{x}} = begin{bmatrix}x_1 \ vdots \ x_n \ 1end{bmatrix}.$$
Finally,
$$hat{mathbf{w}} cdot hat{mathbf{x}} = w_1 x_1 + w_2 x_2 + cdots + w_n x_n + b =mathbf{w} cdot mathbf{x} + b.$$
$endgroup$
$begingroup$
How does the Transpose play into this?
$endgroup$
– Matthew Arthur
Jan 11 at 22:02
1
$begingroup$
@MatthewArthur Typically a vector is assumed to be a column vector. They transpose $mathbf{w}$ to make it a row vector in order to use the "horizontal" notation $[mathbf{w}, b] = [w_1, ldots, w_n, b]$, and then transpose it again to make the whole thing a column vector again.
$endgroup$
– angryavian
Jan 11 at 22:05
add a comment |
$begingroup$
If we have
$$w = begin{bmatrix} w_{1}\w_{2}\vdots\w_{n}end{bmatrix}$$
then $w^{T} = [w_{1}, ldots, w_{n}]$, $[w^{T},b] = [w_{1}, ldots, w_n, b]$, and
$$[w^{T},b] = [w_{1}, ldots, w_n, b]^{T} =begin{bmatrix}w_{1}\vdots\w_{n}\b end{bmatrix}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070379%2fsyntax-explanation-tranpose-of-dot-product%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $mathbf{w} = begin{bmatrix}w_1 \ w_2 \ vdots \ w_nend{bmatrix}$ then
$$hat{mathbf{w}} = begin{bmatrix}w_1 \ w_2 \ vdots \ w_n \ b end{bmatrix}.$$
Similarly
$$hat{mathbf{x}} = begin{bmatrix}x_1 \ vdots \ x_n \ 1end{bmatrix}.$$
Finally,
$$hat{mathbf{w}} cdot hat{mathbf{x}} = w_1 x_1 + w_2 x_2 + cdots + w_n x_n + b =mathbf{w} cdot mathbf{x} + b.$$
$endgroup$
$begingroup$
How does the Transpose play into this?
$endgroup$
– Matthew Arthur
Jan 11 at 22:02
1
$begingroup$
@MatthewArthur Typically a vector is assumed to be a column vector. They transpose $mathbf{w}$ to make it a row vector in order to use the "horizontal" notation $[mathbf{w}, b] = [w_1, ldots, w_n, b]$, and then transpose it again to make the whole thing a column vector again.
$endgroup$
– angryavian
Jan 11 at 22:05
add a comment |
$begingroup$
If $mathbf{w} = begin{bmatrix}w_1 \ w_2 \ vdots \ w_nend{bmatrix}$ then
$$hat{mathbf{w}} = begin{bmatrix}w_1 \ w_2 \ vdots \ w_n \ b end{bmatrix}.$$
Similarly
$$hat{mathbf{x}} = begin{bmatrix}x_1 \ vdots \ x_n \ 1end{bmatrix}.$$
Finally,
$$hat{mathbf{w}} cdot hat{mathbf{x}} = w_1 x_1 + w_2 x_2 + cdots + w_n x_n + b =mathbf{w} cdot mathbf{x} + b.$$
$endgroup$
$begingroup$
How does the Transpose play into this?
$endgroup$
– Matthew Arthur
Jan 11 at 22:02
1
$begingroup$
@MatthewArthur Typically a vector is assumed to be a column vector. They transpose $mathbf{w}$ to make it a row vector in order to use the "horizontal" notation $[mathbf{w}, b] = [w_1, ldots, w_n, b]$, and then transpose it again to make the whole thing a column vector again.
$endgroup$
– angryavian
Jan 11 at 22:05
add a comment |
$begingroup$
If $mathbf{w} = begin{bmatrix}w_1 \ w_2 \ vdots \ w_nend{bmatrix}$ then
$$hat{mathbf{w}} = begin{bmatrix}w_1 \ w_2 \ vdots \ w_n \ b end{bmatrix}.$$
Similarly
$$hat{mathbf{x}} = begin{bmatrix}x_1 \ vdots \ x_n \ 1end{bmatrix}.$$
Finally,
$$hat{mathbf{w}} cdot hat{mathbf{x}} = w_1 x_1 + w_2 x_2 + cdots + w_n x_n + b =mathbf{w} cdot mathbf{x} + b.$$
$endgroup$
If $mathbf{w} = begin{bmatrix}w_1 \ w_2 \ vdots \ w_nend{bmatrix}$ then
$$hat{mathbf{w}} = begin{bmatrix}w_1 \ w_2 \ vdots \ w_n \ b end{bmatrix}.$$
Similarly
$$hat{mathbf{x}} = begin{bmatrix}x_1 \ vdots \ x_n \ 1end{bmatrix}.$$
Finally,
$$hat{mathbf{w}} cdot hat{mathbf{x}} = w_1 x_1 + w_2 x_2 + cdots + w_n x_n + b =mathbf{w} cdot mathbf{x} + b.$$
answered Jan 11 at 22:01
angryavianangryavian
40.5k23280
40.5k23280
$begingroup$
How does the Transpose play into this?
$endgroup$
– Matthew Arthur
Jan 11 at 22:02
1
$begingroup$
@MatthewArthur Typically a vector is assumed to be a column vector. They transpose $mathbf{w}$ to make it a row vector in order to use the "horizontal" notation $[mathbf{w}, b] = [w_1, ldots, w_n, b]$, and then transpose it again to make the whole thing a column vector again.
$endgroup$
– angryavian
Jan 11 at 22:05
add a comment |
$begingroup$
How does the Transpose play into this?
$endgroup$
– Matthew Arthur
Jan 11 at 22:02
1
$begingroup$
@MatthewArthur Typically a vector is assumed to be a column vector. They transpose $mathbf{w}$ to make it a row vector in order to use the "horizontal" notation $[mathbf{w}, b] = [w_1, ldots, w_n, b]$, and then transpose it again to make the whole thing a column vector again.
$endgroup$
– angryavian
Jan 11 at 22:05
$begingroup$
How does the Transpose play into this?
$endgroup$
– Matthew Arthur
Jan 11 at 22:02
$begingroup$
How does the Transpose play into this?
$endgroup$
– Matthew Arthur
Jan 11 at 22:02
1
1
$begingroup$
@MatthewArthur Typically a vector is assumed to be a column vector. They transpose $mathbf{w}$ to make it a row vector in order to use the "horizontal" notation $[mathbf{w}, b] = [w_1, ldots, w_n, b]$, and then transpose it again to make the whole thing a column vector again.
$endgroup$
– angryavian
Jan 11 at 22:05
$begingroup$
@MatthewArthur Typically a vector is assumed to be a column vector. They transpose $mathbf{w}$ to make it a row vector in order to use the "horizontal" notation $[mathbf{w}, b] = [w_1, ldots, w_n, b]$, and then transpose it again to make the whole thing a column vector again.
$endgroup$
– angryavian
Jan 11 at 22:05
add a comment |
$begingroup$
If we have
$$w = begin{bmatrix} w_{1}\w_{2}\vdots\w_{n}end{bmatrix}$$
then $w^{T} = [w_{1}, ldots, w_{n}]$, $[w^{T},b] = [w_{1}, ldots, w_n, b]$, and
$$[w^{T},b] = [w_{1}, ldots, w_n, b]^{T} =begin{bmatrix}w_{1}\vdots\w_{n}\b end{bmatrix}.$$
$endgroup$
add a comment |
$begingroup$
If we have
$$w = begin{bmatrix} w_{1}\w_{2}\vdots\w_{n}end{bmatrix}$$
then $w^{T} = [w_{1}, ldots, w_{n}]$, $[w^{T},b] = [w_{1}, ldots, w_n, b]$, and
$$[w^{T},b] = [w_{1}, ldots, w_n, b]^{T} =begin{bmatrix}w_{1}\vdots\w_{n}\b end{bmatrix}.$$
$endgroup$
add a comment |
$begingroup$
If we have
$$w = begin{bmatrix} w_{1}\w_{2}\vdots\w_{n}end{bmatrix}$$
then $w^{T} = [w_{1}, ldots, w_{n}]$, $[w^{T},b] = [w_{1}, ldots, w_n, b]$, and
$$[w^{T},b] = [w_{1}, ldots, w_n, b]^{T} =begin{bmatrix}w_{1}\vdots\w_{n}\b end{bmatrix}.$$
$endgroup$
If we have
$$w = begin{bmatrix} w_{1}\w_{2}\vdots\w_{n}end{bmatrix}$$
then $w^{T} = [w_{1}, ldots, w_{n}]$, $[w^{T},b] = [w_{1}, ldots, w_n, b]$, and
$$[w^{T},b] = [w_{1}, ldots, w_n, b]^{T} =begin{bmatrix}w_{1}\vdots\w_{n}\b end{bmatrix}.$$
answered Jan 11 at 22:06


Morgan RodgersMorgan Rodgers
9,66721439
9,66721439
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070379%2fsyntax-explanation-tranpose-of-dot-product%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
MKHRXNMVSQ6NnE8RXNHg5uolvxelVP5WcdQ8dpJ CnTpgSviapla8wJ