$5nmid n(n+1)implies 5mid (n^3-6n^2+n-1)$
$begingroup$
Prove $5nmid n(n+1)implies 5mid (n^3-6n^2+n-1)$. My try:
$5nmid n(n+1)implies 5mid (n-2)(n-1)(n+2)=n^3-n^2-4n+4implies$
$5mid (n^3-n^2-4n+4)-(5n^2+ 5(n-1))=n^3-6n^2+n-1$.
This time a simple trick worked, but how to solve this (kind of) problem more methodically, maybe using modular arithmetic?
algebra-precalculus elementary-number-theory modular-arithmetic
$endgroup$
add a comment |
$begingroup$
Prove $5nmid n(n+1)implies 5mid (n^3-6n^2+n-1)$. My try:
$5nmid n(n+1)implies 5mid (n-2)(n-1)(n+2)=n^3-n^2-4n+4implies$
$5mid (n^3-n^2-4n+4)-(5n^2+ 5(n-1))=n^3-6n^2+n-1$.
This time a simple trick worked, but how to solve this (kind of) problem more methodically, maybe using modular arithmetic?
algebra-precalculus elementary-number-theory modular-arithmetic
$endgroup$
2
$begingroup$
I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
$endgroup$
– Doug M
Jan 11 at 21:34
$begingroup$
Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
$endgroup$
– fleablood
Jan 11 at 22:38
$begingroup$
Yes @fleablood ut I believe modular arithmetic is more than that.
$endgroup$
– Lehs
Jan 11 at 22:44
add a comment |
$begingroup$
Prove $5nmid n(n+1)implies 5mid (n^3-6n^2+n-1)$. My try:
$5nmid n(n+1)implies 5mid (n-2)(n-1)(n+2)=n^3-n^2-4n+4implies$
$5mid (n^3-n^2-4n+4)-(5n^2+ 5(n-1))=n^3-6n^2+n-1$.
This time a simple trick worked, but how to solve this (kind of) problem more methodically, maybe using modular arithmetic?
algebra-precalculus elementary-number-theory modular-arithmetic
$endgroup$
Prove $5nmid n(n+1)implies 5mid (n^3-6n^2+n-1)$. My try:
$5nmid n(n+1)implies 5mid (n-2)(n-1)(n+2)=n^3-n^2-4n+4implies$
$5mid (n^3-n^2-4n+4)-(5n^2+ 5(n-1))=n^3-6n^2+n-1$.
This time a simple trick worked, but how to solve this (kind of) problem more methodically, maybe using modular arithmetic?
algebra-precalculus elementary-number-theory modular-arithmetic
algebra-precalculus elementary-number-theory modular-arithmetic
asked Jan 11 at 21:19
LehsLehs
7,02831662
7,02831662
2
$begingroup$
I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
$endgroup$
– Doug M
Jan 11 at 21:34
$begingroup$
Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
$endgroup$
– fleablood
Jan 11 at 22:38
$begingroup$
Yes @fleablood ut I believe modular arithmetic is more than that.
$endgroup$
– Lehs
Jan 11 at 22:44
add a comment |
2
$begingroup$
I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
$endgroup$
– Doug M
Jan 11 at 21:34
$begingroup$
Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
$endgroup$
– fleablood
Jan 11 at 22:38
$begingroup$
Yes @fleablood ut I believe modular arithmetic is more than that.
$endgroup$
– Lehs
Jan 11 at 22:44
2
2
$begingroup$
I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
$endgroup$
– Doug M
Jan 11 at 21:34
$begingroup$
I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
$endgroup$
– Doug M
Jan 11 at 21:34
$begingroup$
Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
$endgroup$
– fleablood
Jan 11 at 22:38
$begingroup$
Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
$endgroup$
– fleablood
Jan 11 at 22:38
$begingroup$
Yes @fleablood ut I believe modular arithmetic is more than that.
$endgroup$
– Lehs
Jan 11 at 22:44
$begingroup$
Yes @fleablood ut I believe modular arithmetic is more than that.
$endgroup$
– Lehs
Jan 11 at 22:44
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$ n^3 - 6 n^2 + n - 1 equiv n^3 - n^2 + n - 1 equiv (n^2 + 1)(n-1) pmod 5 $$
The hypothesis says that $n neq 0,4 pmod 5,$ so that $n equiv 1,2,3 pmod 5.$ Both $2^2 + 1 equiv 3^2 + 1 equiv 0 pmod 5,$ so the $n^2 + 1$ factor takes care of 2,3. The $n-1$ factor takes care of $1 pmod 5$
$endgroup$
$begingroup$
$$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
$endgroup$
– N. S.
Jan 11 at 23:49
$begingroup$
@N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
$endgroup$
– Will Jagy
Jan 11 at 23:59
$begingroup$
@N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
$endgroup$
– Bill Dubuque
Jan 12 at 20:40
add a comment |
$begingroup$
Not really answering the question, I believe, but ... here is another way
$$5 mid n(n+1)(n+2)(n+3)(n+4)$$
since $5$ is prime and using Euclid's lemma
$$5 nmid n(n+1) Rightarrow \
5 mid (n+2)(n+3)(n+4)=24+26n+9n^2+n^3= (25-1)+(25+1)n+(15-6)n^2+n^3 Rightarrow \
5 mid -1+n-6n^2+n^2$$
$endgroup$
add a comment |
$begingroup$
$!bmod 5!:, f(n)equiv n^2(overbrace{n!-!1}^{Large n - 6})+n!-!1, =, (color{#c00}{n!-!1}) (overbrace{n^2+1}^{Largecolor{#0a0}{n^2 - 4}})$
therefore we conclude $ underbrace{ nnotequiv 0,-1}_{Large 5 nmid n(n+1)}Rightarrow color{#c00}{nequiv 1},$ or $!!!!underbrace{nequiv pm2}_{Large Rightarrow color{#0a0}{n^2 equiv 4} }!!!!$ so $,f(n)equiv 0$
Or: $, (color{#c00}{n+1}),f(n)equiv {n^4-1equiv 0 {rm by} nnotequiv 0},$ and little Fermat
so $,color{#c00}{nnotequiv -1}Rightarrow f(n)equiv 0$
$endgroup$
$begingroup$
We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
$endgroup$
– Bill Dubuque
Jan 11 at 22:27
add a comment |
$begingroup$
$n^3 - 6n^2 + n-1 equiv n^3 - n^2 + n-1 pmod 5equiv$
$(n^2 + 1)(n-1) equiv (n^2 -4)(n-1) pmod 5$
$(n-2)(n+2)(n-1) pmod(5)$.
If $n equiv 2,-2, 1 pmod 5$ then $n^3 - 5n^2 + n-1 equiv 0 pmod 5$ and $5|n^3 - 5n^2 + n-1$.
As $5not mid n(n+1)$ and $5$ is prie $5not mid n$ and $5not mid n+1$ and $n not equiv 0pmod 5$ and $nnot equiv -1 pmod 5$.
${-2, -1, 0, 1, 2}$ is a complete residue class of $5$ so $nequiv -2,-1, 0, 1, $ or $2 pmod 5$ and since $nnot equiv 0,-1$ then $n equiv -2, 2$ or $1 pmod 5$. So we are done.
....
Alternatively (now that we know where we want to go)
$nnot mid n(n+1) implies$
$n not mid 0$ or $-1pmod 5implies$
$n mid 1,2,$ or $-2pmod 5implies$
One of $n-1, n-2, n+2equiv 0 pmod 5implies$
$(n-1)(n-2)(n+2)equiv 0 pmod 5 implies$
$ n^3 -n^2 - 4n + 4equiv 0 pmod 5implies$
$n^3 - 6n^2 + n - 1equiv 0 pmod 5 implies $
$5|n^3 - 6n^2 + n-1$
....
Or a third way. $5$ must divide exactly on of $n,n+1, n+2, n+3, n=4$ so i$5$ doesn't divide $n$ or $n+1$ it divides $n+2, n+3, n+4$ which means $5|(n+2)(n+3)(n+4) = n^3 + 9n^2 + 26n + 24$.
$n^3 + 9n^2 +26n + 24 -(n^3 - 6n^2 +n -1) =15n^2 + 25n +25 = 5(3n^2 + 5n + 5)$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070357%2f5-nmid-nn1-implies-5-mid-n3-6n2n-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$ n^3 - 6 n^2 + n - 1 equiv n^3 - n^2 + n - 1 equiv (n^2 + 1)(n-1) pmod 5 $$
The hypothesis says that $n neq 0,4 pmod 5,$ so that $n equiv 1,2,3 pmod 5.$ Both $2^2 + 1 equiv 3^2 + 1 equiv 0 pmod 5,$ so the $n^2 + 1$ factor takes care of 2,3. The $n-1$ factor takes care of $1 pmod 5$
$endgroup$
$begingroup$
$$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
$endgroup$
– N. S.
Jan 11 at 23:49
$begingroup$
@N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
$endgroup$
– Will Jagy
Jan 11 at 23:59
$begingroup$
@N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
$endgroup$
– Bill Dubuque
Jan 12 at 20:40
add a comment |
$begingroup$
$$ n^3 - 6 n^2 + n - 1 equiv n^3 - n^2 + n - 1 equiv (n^2 + 1)(n-1) pmod 5 $$
The hypothesis says that $n neq 0,4 pmod 5,$ so that $n equiv 1,2,3 pmod 5.$ Both $2^2 + 1 equiv 3^2 + 1 equiv 0 pmod 5,$ so the $n^2 + 1$ factor takes care of 2,3. The $n-1$ factor takes care of $1 pmod 5$
$endgroup$
$begingroup$
$$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
$endgroup$
– N. S.
Jan 11 at 23:49
$begingroup$
@N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
$endgroup$
– Will Jagy
Jan 11 at 23:59
$begingroup$
@N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
$endgroup$
– Bill Dubuque
Jan 12 at 20:40
add a comment |
$begingroup$
$$ n^3 - 6 n^2 + n - 1 equiv n^3 - n^2 + n - 1 equiv (n^2 + 1)(n-1) pmod 5 $$
The hypothesis says that $n neq 0,4 pmod 5,$ so that $n equiv 1,2,3 pmod 5.$ Both $2^2 + 1 equiv 3^2 + 1 equiv 0 pmod 5,$ so the $n^2 + 1$ factor takes care of 2,3. The $n-1$ factor takes care of $1 pmod 5$
$endgroup$
$$ n^3 - 6 n^2 + n - 1 equiv n^3 - n^2 + n - 1 equiv (n^2 + 1)(n-1) pmod 5 $$
The hypothesis says that $n neq 0,4 pmod 5,$ so that $n equiv 1,2,3 pmod 5.$ Both $2^2 + 1 equiv 3^2 + 1 equiv 0 pmod 5,$ so the $n^2 + 1$ factor takes care of 2,3. The $n-1$ factor takes care of $1 pmod 5$
answered Jan 11 at 21:52
Will JagyWill Jagy
103k5101200
103k5101200
$begingroup$
$$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
$endgroup$
– N. S.
Jan 11 at 23:49
$begingroup$
@N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
$endgroup$
– Will Jagy
Jan 11 at 23:59
$begingroup$
@N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
$endgroup$
– Bill Dubuque
Jan 12 at 20:40
add a comment |
$begingroup$
$$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
$endgroup$
– N. S.
Jan 11 at 23:49
$begingroup$
@N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
$endgroup$
– Will Jagy
Jan 11 at 23:59
$begingroup$
@N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
$endgroup$
– Bill Dubuque
Jan 12 at 20:40
$begingroup$
$$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
$endgroup$
– N. S.
Jan 11 at 23:49
$begingroup$
$$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
$endgroup$
– N. S.
Jan 11 at 23:49
$begingroup$
@N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
$endgroup$
– Will Jagy
Jan 11 at 23:59
$begingroup$
@N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
$endgroup$
– Will Jagy
Jan 11 at 23:59
$begingroup$
@N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
$endgroup$
– Bill Dubuque
Jan 12 at 20:40
$begingroup$
@N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
$endgroup$
– Bill Dubuque
Jan 12 at 20:40
add a comment |
$begingroup$
Not really answering the question, I believe, but ... here is another way
$$5 mid n(n+1)(n+2)(n+3)(n+4)$$
since $5$ is prime and using Euclid's lemma
$$5 nmid n(n+1) Rightarrow \
5 mid (n+2)(n+3)(n+4)=24+26n+9n^2+n^3= (25-1)+(25+1)n+(15-6)n^2+n^3 Rightarrow \
5 mid -1+n-6n^2+n^2$$
$endgroup$
add a comment |
$begingroup$
Not really answering the question, I believe, but ... here is another way
$$5 mid n(n+1)(n+2)(n+3)(n+4)$$
since $5$ is prime and using Euclid's lemma
$$5 nmid n(n+1) Rightarrow \
5 mid (n+2)(n+3)(n+4)=24+26n+9n^2+n^3= (25-1)+(25+1)n+(15-6)n^2+n^3 Rightarrow \
5 mid -1+n-6n^2+n^2$$
$endgroup$
add a comment |
$begingroup$
Not really answering the question, I believe, but ... here is another way
$$5 mid n(n+1)(n+2)(n+3)(n+4)$$
since $5$ is prime and using Euclid's lemma
$$5 nmid n(n+1) Rightarrow \
5 mid (n+2)(n+3)(n+4)=24+26n+9n^2+n^3= (25-1)+(25+1)n+(15-6)n^2+n^3 Rightarrow \
5 mid -1+n-6n^2+n^2$$
$endgroup$
Not really answering the question, I believe, but ... here is another way
$$5 mid n(n+1)(n+2)(n+3)(n+4)$$
since $5$ is prime and using Euclid's lemma
$$5 nmid n(n+1) Rightarrow \
5 mid (n+2)(n+3)(n+4)=24+26n+9n^2+n^3= (25-1)+(25+1)n+(15-6)n^2+n^3 Rightarrow \
5 mid -1+n-6n^2+n^2$$
answered Jan 11 at 22:00
rtybasertybase
10.7k21533
10.7k21533
add a comment |
add a comment |
$begingroup$
$!bmod 5!:, f(n)equiv n^2(overbrace{n!-!1}^{Large n - 6})+n!-!1, =, (color{#c00}{n!-!1}) (overbrace{n^2+1}^{Largecolor{#0a0}{n^2 - 4}})$
therefore we conclude $ underbrace{ nnotequiv 0,-1}_{Large 5 nmid n(n+1)}Rightarrow color{#c00}{nequiv 1},$ or $!!!!underbrace{nequiv pm2}_{Large Rightarrow color{#0a0}{n^2 equiv 4} }!!!!$ so $,f(n)equiv 0$
Or: $, (color{#c00}{n+1}),f(n)equiv {n^4-1equiv 0 {rm by} nnotequiv 0},$ and little Fermat
so $,color{#c00}{nnotequiv -1}Rightarrow f(n)equiv 0$
$endgroup$
$begingroup$
We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
$endgroup$
– Bill Dubuque
Jan 11 at 22:27
add a comment |
$begingroup$
$!bmod 5!:, f(n)equiv n^2(overbrace{n!-!1}^{Large n - 6})+n!-!1, =, (color{#c00}{n!-!1}) (overbrace{n^2+1}^{Largecolor{#0a0}{n^2 - 4}})$
therefore we conclude $ underbrace{ nnotequiv 0,-1}_{Large 5 nmid n(n+1)}Rightarrow color{#c00}{nequiv 1},$ or $!!!!underbrace{nequiv pm2}_{Large Rightarrow color{#0a0}{n^2 equiv 4} }!!!!$ so $,f(n)equiv 0$
Or: $, (color{#c00}{n+1}),f(n)equiv {n^4-1equiv 0 {rm by} nnotequiv 0},$ and little Fermat
so $,color{#c00}{nnotequiv -1}Rightarrow f(n)equiv 0$
$endgroup$
$begingroup$
We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
$endgroup$
– Bill Dubuque
Jan 11 at 22:27
add a comment |
$begingroup$
$!bmod 5!:, f(n)equiv n^2(overbrace{n!-!1}^{Large n - 6})+n!-!1, =, (color{#c00}{n!-!1}) (overbrace{n^2+1}^{Largecolor{#0a0}{n^2 - 4}})$
therefore we conclude $ underbrace{ nnotequiv 0,-1}_{Large 5 nmid n(n+1)}Rightarrow color{#c00}{nequiv 1},$ or $!!!!underbrace{nequiv pm2}_{Large Rightarrow color{#0a0}{n^2 equiv 4} }!!!!$ so $,f(n)equiv 0$
Or: $, (color{#c00}{n+1}),f(n)equiv {n^4-1equiv 0 {rm by} nnotequiv 0},$ and little Fermat
so $,color{#c00}{nnotequiv -1}Rightarrow f(n)equiv 0$
$endgroup$
$!bmod 5!:, f(n)equiv n^2(overbrace{n!-!1}^{Large n - 6})+n!-!1, =, (color{#c00}{n!-!1}) (overbrace{n^2+1}^{Largecolor{#0a0}{n^2 - 4}})$
therefore we conclude $ underbrace{ nnotequiv 0,-1}_{Large 5 nmid n(n+1)}Rightarrow color{#c00}{nequiv 1},$ or $!!!!underbrace{nequiv pm2}_{Large Rightarrow color{#0a0}{n^2 equiv 4} }!!!!$ so $,f(n)equiv 0$
Or: $, (color{#c00}{n+1}),f(n)equiv {n^4-1equiv 0 {rm by} nnotequiv 0},$ and little Fermat
so $,color{#c00}{nnotequiv -1}Rightarrow f(n)equiv 0$
edited Jan 11 at 22:55
answered Jan 11 at 22:15
Bill DubuqueBill Dubuque
209k29191639
209k29191639
$begingroup$
We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
$endgroup$
– Bill Dubuque
Jan 11 at 22:27
add a comment |
$begingroup$
We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
$endgroup$
– Bill Dubuque
Jan 11 at 22:27
$begingroup$
We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
$endgroup$
– Bill Dubuque
Jan 11 at 22:27
$begingroup$
We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
$endgroup$
– Bill Dubuque
Jan 11 at 22:27
add a comment |
$begingroup$
$n^3 - 6n^2 + n-1 equiv n^3 - n^2 + n-1 pmod 5equiv$
$(n^2 + 1)(n-1) equiv (n^2 -4)(n-1) pmod 5$
$(n-2)(n+2)(n-1) pmod(5)$.
If $n equiv 2,-2, 1 pmod 5$ then $n^3 - 5n^2 + n-1 equiv 0 pmod 5$ and $5|n^3 - 5n^2 + n-1$.
As $5not mid n(n+1)$ and $5$ is prie $5not mid n$ and $5not mid n+1$ and $n not equiv 0pmod 5$ and $nnot equiv -1 pmod 5$.
${-2, -1, 0, 1, 2}$ is a complete residue class of $5$ so $nequiv -2,-1, 0, 1, $ or $2 pmod 5$ and since $nnot equiv 0,-1$ then $n equiv -2, 2$ or $1 pmod 5$. So we are done.
....
Alternatively (now that we know where we want to go)
$nnot mid n(n+1) implies$
$n not mid 0$ or $-1pmod 5implies$
$n mid 1,2,$ or $-2pmod 5implies$
One of $n-1, n-2, n+2equiv 0 pmod 5implies$
$(n-1)(n-2)(n+2)equiv 0 pmod 5 implies$
$ n^3 -n^2 - 4n + 4equiv 0 pmod 5implies$
$n^3 - 6n^2 + n - 1equiv 0 pmod 5 implies $
$5|n^3 - 6n^2 + n-1$
....
Or a third way. $5$ must divide exactly on of $n,n+1, n+2, n+3, n=4$ so i$5$ doesn't divide $n$ or $n+1$ it divides $n+2, n+3, n+4$ which means $5|(n+2)(n+3)(n+4) = n^3 + 9n^2 + 26n + 24$.
$n^3 + 9n^2 +26n + 24 -(n^3 - 6n^2 +n -1) =15n^2 + 25n +25 = 5(3n^2 + 5n + 5)$
$endgroup$
add a comment |
$begingroup$
$n^3 - 6n^2 + n-1 equiv n^3 - n^2 + n-1 pmod 5equiv$
$(n^2 + 1)(n-1) equiv (n^2 -4)(n-1) pmod 5$
$(n-2)(n+2)(n-1) pmod(5)$.
If $n equiv 2,-2, 1 pmod 5$ then $n^3 - 5n^2 + n-1 equiv 0 pmod 5$ and $5|n^3 - 5n^2 + n-1$.
As $5not mid n(n+1)$ and $5$ is prie $5not mid n$ and $5not mid n+1$ and $n not equiv 0pmod 5$ and $nnot equiv -1 pmod 5$.
${-2, -1, 0, 1, 2}$ is a complete residue class of $5$ so $nequiv -2,-1, 0, 1, $ or $2 pmod 5$ and since $nnot equiv 0,-1$ then $n equiv -2, 2$ or $1 pmod 5$. So we are done.
....
Alternatively (now that we know where we want to go)
$nnot mid n(n+1) implies$
$n not mid 0$ or $-1pmod 5implies$
$n mid 1,2,$ or $-2pmod 5implies$
One of $n-1, n-2, n+2equiv 0 pmod 5implies$
$(n-1)(n-2)(n+2)equiv 0 pmod 5 implies$
$ n^3 -n^2 - 4n + 4equiv 0 pmod 5implies$
$n^3 - 6n^2 + n - 1equiv 0 pmod 5 implies $
$5|n^3 - 6n^2 + n-1$
....
Or a third way. $5$ must divide exactly on of $n,n+1, n+2, n+3, n=4$ so i$5$ doesn't divide $n$ or $n+1$ it divides $n+2, n+3, n+4$ which means $5|(n+2)(n+3)(n+4) = n^3 + 9n^2 + 26n + 24$.
$n^3 + 9n^2 +26n + 24 -(n^3 - 6n^2 +n -1) =15n^2 + 25n +25 = 5(3n^2 + 5n + 5)$
$endgroup$
add a comment |
$begingroup$
$n^3 - 6n^2 + n-1 equiv n^3 - n^2 + n-1 pmod 5equiv$
$(n^2 + 1)(n-1) equiv (n^2 -4)(n-1) pmod 5$
$(n-2)(n+2)(n-1) pmod(5)$.
If $n equiv 2,-2, 1 pmod 5$ then $n^3 - 5n^2 + n-1 equiv 0 pmod 5$ and $5|n^3 - 5n^2 + n-1$.
As $5not mid n(n+1)$ and $5$ is prie $5not mid n$ and $5not mid n+1$ and $n not equiv 0pmod 5$ and $nnot equiv -1 pmod 5$.
${-2, -1, 0, 1, 2}$ is a complete residue class of $5$ so $nequiv -2,-1, 0, 1, $ or $2 pmod 5$ and since $nnot equiv 0,-1$ then $n equiv -2, 2$ or $1 pmod 5$. So we are done.
....
Alternatively (now that we know where we want to go)
$nnot mid n(n+1) implies$
$n not mid 0$ or $-1pmod 5implies$
$n mid 1,2,$ or $-2pmod 5implies$
One of $n-1, n-2, n+2equiv 0 pmod 5implies$
$(n-1)(n-2)(n+2)equiv 0 pmod 5 implies$
$ n^3 -n^2 - 4n + 4equiv 0 pmod 5implies$
$n^3 - 6n^2 + n - 1equiv 0 pmod 5 implies $
$5|n^3 - 6n^2 + n-1$
....
Or a third way. $5$ must divide exactly on of $n,n+1, n+2, n+3, n=4$ so i$5$ doesn't divide $n$ or $n+1$ it divides $n+2, n+3, n+4$ which means $5|(n+2)(n+3)(n+4) = n^3 + 9n^2 + 26n + 24$.
$n^3 + 9n^2 +26n + 24 -(n^3 - 6n^2 +n -1) =15n^2 + 25n +25 = 5(3n^2 + 5n + 5)$
$endgroup$
$n^3 - 6n^2 + n-1 equiv n^3 - n^2 + n-1 pmod 5equiv$
$(n^2 + 1)(n-1) equiv (n^2 -4)(n-1) pmod 5$
$(n-2)(n+2)(n-1) pmod(5)$.
If $n equiv 2,-2, 1 pmod 5$ then $n^3 - 5n^2 + n-1 equiv 0 pmod 5$ and $5|n^3 - 5n^2 + n-1$.
As $5not mid n(n+1)$ and $5$ is prie $5not mid n$ and $5not mid n+1$ and $n not equiv 0pmod 5$ and $nnot equiv -1 pmod 5$.
${-2, -1, 0, 1, 2}$ is a complete residue class of $5$ so $nequiv -2,-1, 0, 1, $ or $2 pmod 5$ and since $nnot equiv 0,-1$ then $n equiv -2, 2$ or $1 pmod 5$. So we are done.
....
Alternatively (now that we know where we want to go)
$nnot mid n(n+1) implies$
$n not mid 0$ or $-1pmod 5implies$
$n mid 1,2,$ or $-2pmod 5implies$
One of $n-1, n-2, n+2equiv 0 pmod 5implies$
$(n-1)(n-2)(n+2)equiv 0 pmod 5 implies$
$ n^3 -n^2 - 4n + 4equiv 0 pmod 5implies$
$n^3 - 6n^2 + n - 1equiv 0 pmod 5 implies $
$5|n^3 - 6n^2 + n-1$
....
Or a third way. $5$ must divide exactly on of $n,n+1, n+2, n+3, n=4$ so i$5$ doesn't divide $n$ or $n+1$ it divides $n+2, n+3, n+4$ which means $5|(n+2)(n+3)(n+4) = n^3 + 9n^2 + 26n + 24$.
$n^3 + 9n^2 +26n + 24 -(n^3 - 6n^2 +n -1) =15n^2 + 25n +25 = 5(3n^2 + 5n + 5)$
answered Jan 11 at 23:06
fleabloodfleablood
69.4k22685
69.4k22685
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070357%2f5-nmid-nn1-implies-5-mid-n3-6n2n-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
$endgroup$
– Doug M
Jan 11 at 21:34
$begingroup$
Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
$endgroup$
– fleablood
Jan 11 at 22:38
$begingroup$
Yes @fleablood ut I believe modular arithmetic is more than that.
$endgroup$
– Lehs
Jan 11 at 22:44