$5nmid n(n+1)implies 5mid (n^3-6n^2+n-1)$












0












$begingroup$


Prove $5nmid n(n+1)implies 5mid (n^3-6n^2+n-1)$. My try:



$5nmid n(n+1)implies 5mid (n-2)(n-1)(n+2)=n^3-n^2-4n+4implies$
$5mid (n^3-n^2-4n+4)-(5n^2+ 5(n-1))=n^3-6n^2+n-1$.



This time a simple trick worked, but how to solve this (kind of) problem more methodically, maybe using modular arithmetic?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
    $endgroup$
    – Doug M
    Jan 11 at 21:34












  • $begingroup$
    Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
    $endgroup$
    – fleablood
    Jan 11 at 22:38










  • $begingroup$
    Yes @fleablood ut I believe modular arithmetic is more than that.
    $endgroup$
    – Lehs
    Jan 11 at 22:44
















0












$begingroup$


Prove $5nmid n(n+1)implies 5mid (n^3-6n^2+n-1)$. My try:



$5nmid n(n+1)implies 5mid (n-2)(n-1)(n+2)=n^3-n^2-4n+4implies$
$5mid (n^3-n^2-4n+4)-(5n^2+ 5(n-1))=n^3-6n^2+n-1$.



This time a simple trick worked, but how to solve this (kind of) problem more methodically, maybe using modular arithmetic?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
    $endgroup$
    – Doug M
    Jan 11 at 21:34












  • $begingroup$
    Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
    $endgroup$
    – fleablood
    Jan 11 at 22:38










  • $begingroup$
    Yes @fleablood ut I believe modular arithmetic is more than that.
    $endgroup$
    – Lehs
    Jan 11 at 22:44














0












0








0





$begingroup$


Prove $5nmid n(n+1)implies 5mid (n^3-6n^2+n-1)$. My try:



$5nmid n(n+1)implies 5mid (n-2)(n-1)(n+2)=n^3-n^2-4n+4implies$
$5mid (n^3-n^2-4n+4)-(5n^2+ 5(n-1))=n^3-6n^2+n-1$.



This time a simple trick worked, but how to solve this (kind of) problem more methodically, maybe using modular arithmetic?










share|cite|improve this question









$endgroup$




Prove $5nmid n(n+1)implies 5mid (n^3-6n^2+n-1)$. My try:



$5nmid n(n+1)implies 5mid (n-2)(n-1)(n+2)=n^3-n^2-4n+4implies$
$5mid (n^3-n^2-4n+4)-(5n^2+ 5(n-1))=n^3-6n^2+n-1$.



This time a simple trick worked, but how to solve this (kind of) problem more methodically, maybe using modular arithmetic?







algebra-precalculus elementary-number-theory modular-arithmetic






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 11 at 21:19









LehsLehs

7,02831662




7,02831662








  • 2




    $begingroup$
    I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
    $endgroup$
    – Doug M
    Jan 11 at 21:34












  • $begingroup$
    Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
    $endgroup$
    – fleablood
    Jan 11 at 22:38










  • $begingroup$
    Yes @fleablood ut I believe modular arithmetic is more than that.
    $endgroup$
    – Lehs
    Jan 11 at 22:44














  • 2




    $begingroup$
    I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
    $endgroup$
    – Doug M
    Jan 11 at 21:34












  • $begingroup$
    Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
    $endgroup$
    – fleablood
    Jan 11 at 22:38










  • $begingroup$
    Yes @fleablood ut I believe modular arithmetic is more than that.
    $endgroup$
    – Lehs
    Jan 11 at 22:44








2




2




$begingroup$
I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
$endgroup$
– Doug M
Jan 11 at 21:34






$begingroup$
I like your approach. If you want to be methodical, brute force the cases. $n = 1, n=2, n=3$ and for any polynomial if $a|f(n)$ then $a|f(n+a)$ which can be shown using modular arithmetic or by the properties of binomials.
$endgroup$
– Doug M
Jan 11 at 21:34














$begingroup$
Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
$endgroup$
– fleablood
Jan 11 at 22:38




$begingroup$
Well being able to say $5not mid (n-2)(1-1)(n+2)$ is modular arithmetic. Otherwise how can you justify it?
$endgroup$
– fleablood
Jan 11 at 22:38












$begingroup$
Yes @fleablood ut I believe modular arithmetic is more than that.
$endgroup$
– Lehs
Jan 11 at 22:44




$begingroup$
Yes @fleablood ut I believe modular arithmetic is more than that.
$endgroup$
– Lehs
Jan 11 at 22:44










4 Answers
4






active

oldest

votes


















3












$begingroup$

$$ n^3 - 6 n^2 + n - 1 equiv n^3 - n^2 + n - 1 equiv (n^2 + 1)(n-1) pmod 5 $$



The hypothesis says that $n neq 0,4 pmod 5,$ so that $n equiv 1,2,3 pmod 5.$ Both $2^2 + 1 equiv 3^2 + 1 equiv 0 pmod 5,$ so the $n^2 + 1$ factor takes care of 2,3. The $n-1$ factor takes care of $1 pmod 5$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    $$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
    $endgroup$
    – N. S.
    Jan 11 at 23:49










  • $begingroup$
    @N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
    $endgroup$
    – Will Jagy
    Jan 11 at 23:59










  • $begingroup$
    @N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
    $endgroup$
    – Bill Dubuque
    Jan 12 at 20:40



















1












$begingroup$

Not really answering the question, I believe, but ... here is another way
$$5 mid n(n+1)(n+2)(n+3)(n+4)$$
since $5$ is prime and using Euclid's lemma
$$5 nmid n(n+1) Rightarrow \
5 mid (n+2)(n+3)(n+4)=24+26n+9n^2+n^3= (25-1)+(25+1)n+(15-6)n^2+n^3 Rightarrow \
5 mid -1+n-6n^2+n^2$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    $!bmod 5!:, f(n)equiv n^2(overbrace{n!-!1}^{Large n - 6})+n!-!1, =, (color{#c00}{n!-!1}) (overbrace{n^2+1}^{Largecolor{#0a0}{n^2 - 4}})$



    therefore we conclude $ underbrace{ nnotequiv 0,-1}_{Large 5 nmid n(n+1)}Rightarrow color{#c00}{nequiv 1},$ or $!!!!underbrace{nequiv pm2}_{Large Rightarrow color{#0a0}{n^2 equiv 4} }!!!!$ so $,f(n)equiv 0$





    Or: $, (color{#c00}{n+1}),f(n)equiv {n^4-1equiv 0 {rm by} nnotequiv 0},$ and little Fermat



    so $,color{#c00}{nnotequiv -1}Rightarrow f(n)equiv 0$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
      $endgroup$
      – Bill Dubuque
      Jan 11 at 22:27





















    0












    $begingroup$

    $n^3 - 6n^2 + n-1 equiv n^3 - n^2 + n-1 pmod 5equiv$



    $(n^2 + 1)(n-1) equiv (n^2 -4)(n-1) pmod 5$



    $(n-2)(n+2)(n-1) pmod(5)$.



    If $n equiv 2,-2, 1 pmod 5$ then $n^3 - 5n^2 + n-1 equiv 0 pmod 5$ and $5|n^3 - 5n^2 + n-1$.



    As $5not mid n(n+1)$ and $5$ is prie $5not mid n$ and $5not mid n+1$ and $n not equiv 0pmod 5$ and $nnot equiv -1 pmod 5$.



    ${-2, -1, 0, 1, 2}$ is a complete residue class of $5$ so $nequiv -2,-1, 0, 1, $ or $2 pmod 5$ and since $nnot equiv 0,-1$ then $n equiv -2, 2$ or $1 pmod 5$. So we are done.



    ....



    Alternatively (now that we know where we want to go)



    $nnot mid n(n+1) implies$



    $n not mid 0$ or $-1pmod 5implies$



    $n mid 1,2,$ or $-2pmod 5implies$



    One of $n-1, n-2, n+2equiv 0 pmod 5implies$



    $(n-1)(n-2)(n+2)equiv 0 pmod 5 implies$



    $ n^3 -n^2 - 4n + 4equiv 0 pmod 5implies$



    $n^3 - 6n^2 + n - 1equiv 0 pmod 5 implies $



    $5|n^3 - 6n^2 + n-1$



    ....



    Or a third way. $5$ must divide exactly on of $n,n+1, n+2, n+3, n=4$ so i$5$ doesn't divide $n$ or $n+1$ it divides $n+2, n+3, n+4$ which means $5|(n+2)(n+3)(n+4) = n^3 + 9n^2 + 26n + 24$.



    $n^3 + 9n^2 +26n + 24 -(n^3 - 6n^2 +n -1) =15n^2 + 25n +25 = 5(3n^2 + 5n + 5)$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070357%2f5-nmid-nn1-implies-5-mid-n3-6n2n-1%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      $$ n^3 - 6 n^2 + n - 1 equiv n^3 - n^2 + n - 1 equiv (n^2 + 1)(n-1) pmod 5 $$



      The hypothesis says that $n neq 0,4 pmod 5,$ so that $n equiv 1,2,3 pmod 5.$ Both $2^2 + 1 equiv 3^2 + 1 equiv 0 pmod 5,$ so the $n^2 + 1$ factor takes care of 2,3. The $n-1$ factor takes care of $1 pmod 5$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        $$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
        $endgroup$
        – N. S.
        Jan 11 at 23:49










      • $begingroup$
        @N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
        $endgroup$
        – Will Jagy
        Jan 11 at 23:59










      • $begingroup$
        @N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
        $endgroup$
        – Bill Dubuque
        Jan 12 at 20:40
















      3












      $begingroup$

      $$ n^3 - 6 n^2 + n - 1 equiv n^3 - n^2 + n - 1 equiv (n^2 + 1)(n-1) pmod 5 $$



      The hypothesis says that $n neq 0,4 pmod 5,$ so that $n equiv 1,2,3 pmod 5.$ Both $2^2 + 1 equiv 3^2 + 1 equiv 0 pmod 5,$ so the $n^2 + 1$ factor takes care of 2,3. The $n-1$ factor takes care of $1 pmod 5$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        $$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
        $endgroup$
        – N. S.
        Jan 11 at 23:49










      • $begingroup$
        @N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
        $endgroup$
        – Will Jagy
        Jan 11 at 23:59










      • $begingroup$
        @N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
        $endgroup$
        – Bill Dubuque
        Jan 12 at 20:40














      3












      3








      3





      $begingroup$

      $$ n^3 - 6 n^2 + n - 1 equiv n^3 - n^2 + n - 1 equiv (n^2 + 1)(n-1) pmod 5 $$



      The hypothesis says that $n neq 0,4 pmod 5,$ so that $n equiv 1,2,3 pmod 5.$ Both $2^2 + 1 equiv 3^2 + 1 equiv 0 pmod 5,$ so the $n^2 + 1$ factor takes care of 2,3. The $n-1$ factor takes care of $1 pmod 5$






      share|cite|improve this answer









      $endgroup$



      $$ n^3 - 6 n^2 + n - 1 equiv n^3 - n^2 + n - 1 equiv (n^2 + 1)(n-1) pmod 5 $$



      The hypothesis says that $n neq 0,4 pmod 5,$ so that $n equiv 1,2,3 pmod 5.$ Both $2^2 + 1 equiv 3^2 + 1 equiv 0 pmod 5,$ so the $n^2 + 1$ factor takes care of 2,3. The $n-1$ factor takes care of $1 pmod 5$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 11 at 21:52









      Will JagyWill Jagy

      103k5101200




      103k5101200












      • $begingroup$
        $$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
        $endgroup$
        – N. S.
        Jan 11 at 23:49










      • $begingroup$
        @N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
        $endgroup$
        – Will Jagy
        Jan 11 at 23:59










      • $begingroup$
        @N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
        $endgroup$
        – Bill Dubuque
        Jan 12 at 20:40


















      • $begingroup$
        $$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
        $endgroup$
        – N. S.
        Jan 11 at 23:49










      • $begingroup$
        @N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
        $endgroup$
        – Will Jagy
        Jan 11 at 23:59










      • $begingroup$
        @N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
        $endgroup$
        – Bill Dubuque
        Jan 12 at 20:40
















      $begingroup$
      $$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
      $endgroup$
      – N. S.
      Jan 11 at 23:49




      $begingroup$
      $$n^2-1 equiv (n-2)(n-3) pmod{5}$$ ;)
      $endgroup$
      – N. S.
      Jan 11 at 23:49












      $begingroup$
      @N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
      $endgroup$
      – Will Jagy
      Jan 11 at 23:59




      $begingroup$
      @N.S. sure. That is the sort of thing where I have the conclusion memorized, square roots of -1 and so forth, on account of working with integer coefficient quadratic forms.
      $endgroup$
      – Will Jagy
      Jan 11 at 23:59












      $begingroup$
      @N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
      $endgroup$
      – Bill Dubuque
      Jan 12 at 20:40




      $begingroup$
      @N.S. Simpler: $,5mid (pm2)^2!+1 $ Using a balanced (least magnitude) residue system often simplifies (manual) computations (as I attempted to highlight in my answer).
      $endgroup$
      – Bill Dubuque
      Jan 12 at 20:40











      1












      $begingroup$

      Not really answering the question, I believe, but ... here is another way
      $$5 mid n(n+1)(n+2)(n+3)(n+4)$$
      since $5$ is prime and using Euclid's lemma
      $$5 nmid n(n+1) Rightarrow \
      5 mid (n+2)(n+3)(n+4)=24+26n+9n^2+n^3= (25-1)+(25+1)n+(15-6)n^2+n^3 Rightarrow \
      5 mid -1+n-6n^2+n^2$$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Not really answering the question, I believe, but ... here is another way
        $$5 mid n(n+1)(n+2)(n+3)(n+4)$$
        since $5$ is prime and using Euclid's lemma
        $$5 nmid n(n+1) Rightarrow \
        5 mid (n+2)(n+3)(n+4)=24+26n+9n^2+n^3= (25-1)+(25+1)n+(15-6)n^2+n^3 Rightarrow \
        5 mid -1+n-6n^2+n^2$$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Not really answering the question, I believe, but ... here is another way
          $$5 mid n(n+1)(n+2)(n+3)(n+4)$$
          since $5$ is prime and using Euclid's lemma
          $$5 nmid n(n+1) Rightarrow \
          5 mid (n+2)(n+3)(n+4)=24+26n+9n^2+n^3= (25-1)+(25+1)n+(15-6)n^2+n^3 Rightarrow \
          5 mid -1+n-6n^2+n^2$$






          share|cite|improve this answer









          $endgroup$



          Not really answering the question, I believe, but ... here is another way
          $$5 mid n(n+1)(n+2)(n+3)(n+4)$$
          since $5$ is prime and using Euclid's lemma
          $$5 nmid n(n+1) Rightarrow \
          5 mid (n+2)(n+3)(n+4)=24+26n+9n^2+n^3= (25-1)+(25+1)n+(15-6)n^2+n^3 Rightarrow \
          5 mid -1+n-6n^2+n^2$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 11 at 22:00









          rtybasertybase

          10.7k21533




          10.7k21533























              1












              $begingroup$

              $!bmod 5!:, f(n)equiv n^2(overbrace{n!-!1}^{Large n - 6})+n!-!1, =, (color{#c00}{n!-!1}) (overbrace{n^2+1}^{Largecolor{#0a0}{n^2 - 4}})$



              therefore we conclude $ underbrace{ nnotequiv 0,-1}_{Large 5 nmid n(n+1)}Rightarrow color{#c00}{nequiv 1},$ or $!!!!underbrace{nequiv pm2}_{Large Rightarrow color{#0a0}{n^2 equiv 4} }!!!!$ so $,f(n)equiv 0$





              Or: $, (color{#c00}{n+1}),f(n)equiv {n^4-1equiv 0 {rm by} nnotequiv 0},$ and little Fermat



              so $,color{#c00}{nnotequiv -1}Rightarrow f(n)equiv 0$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
                $endgroup$
                – Bill Dubuque
                Jan 11 at 22:27


















              1












              $begingroup$

              $!bmod 5!:, f(n)equiv n^2(overbrace{n!-!1}^{Large n - 6})+n!-!1, =, (color{#c00}{n!-!1}) (overbrace{n^2+1}^{Largecolor{#0a0}{n^2 - 4}})$



              therefore we conclude $ underbrace{ nnotequiv 0,-1}_{Large 5 nmid n(n+1)}Rightarrow color{#c00}{nequiv 1},$ or $!!!!underbrace{nequiv pm2}_{Large Rightarrow color{#0a0}{n^2 equiv 4} }!!!!$ so $,f(n)equiv 0$





              Or: $, (color{#c00}{n+1}),f(n)equiv {n^4-1equiv 0 {rm by} nnotequiv 0},$ and little Fermat



              so $,color{#c00}{nnotequiv -1}Rightarrow f(n)equiv 0$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
                $endgroup$
                – Bill Dubuque
                Jan 11 at 22:27
















              1












              1








              1





              $begingroup$

              $!bmod 5!:, f(n)equiv n^2(overbrace{n!-!1}^{Large n - 6})+n!-!1, =, (color{#c00}{n!-!1}) (overbrace{n^2+1}^{Largecolor{#0a0}{n^2 - 4}})$



              therefore we conclude $ underbrace{ nnotequiv 0,-1}_{Large 5 nmid n(n+1)}Rightarrow color{#c00}{nequiv 1},$ or $!!!!underbrace{nequiv pm2}_{Large Rightarrow color{#0a0}{n^2 equiv 4} }!!!!$ so $,f(n)equiv 0$





              Or: $, (color{#c00}{n+1}),f(n)equiv {n^4-1equiv 0 {rm by} nnotequiv 0},$ and little Fermat



              so $,color{#c00}{nnotequiv -1}Rightarrow f(n)equiv 0$






              share|cite|improve this answer











              $endgroup$



              $!bmod 5!:, f(n)equiv n^2(overbrace{n!-!1}^{Large n - 6})+n!-!1, =, (color{#c00}{n!-!1}) (overbrace{n^2+1}^{Largecolor{#0a0}{n^2 - 4}})$



              therefore we conclude $ underbrace{ nnotequiv 0,-1}_{Large 5 nmid n(n+1)}Rightarrow color{#c00}{nequiv 1},$ or $!!!!underbrace{nequiv pm2}_{Large Rightarrow color{#0a0}{n^2 equiv 4} }!!!!$ so $,f(n)equiv 0$





              Or: $, (color{#c00}{n+1}),f(n)equiv {n^4-1equiv 0 {rm by} nnotequiv 0},$ and little Fermat



              so $,color{#c00}{nnotequiv -1}Rightarrow f(n)equiv 0$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Jan 11 at 22:55

























              answered Jan 11 at 22:15









              Bill DubuqueBill Dubuque

              209k29191639




              209k29191639












              • $begingroup$
                We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
                $endgroup$
                – Bill Dubuque
                Jan 11 at 22:27




















              • $begingroup$
                We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
                $endgroup$
                – Bill Dubuque
                Jan 11 at 22:27


















              $begingroup$
              We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
              $endgroup$
              – Bill Dubuque
              Jan 11 at 22:27






              $begingroup$
              We used a balanced residue system $, nequiv 0,,pm1,pm2pmod{!5} $
              $endgroup$
              – Bill Dubuque
              Jan 11 at 22:27













              0












              $begingroup$

              $n^3 - 6n^2 + n-1 equiv n^3 - n^2 + n-1 pmod 5equiv$



              $(n^2 + 1)(n-1) equiv (n^2 -4)(n-1) pmod 5$



              $(n-2)(n+2)(n-1) pmod(5)$.



              If $n equiv 2,-2, 1 pmod 5$ then $n^3 - 5n^2 + n-1 equiv 0 pmod 5$ and $5|n^3 - 5n^2 + n-1$.



              As $5not mid n(n+1)$ and $5$ is prie $5not mid n$ and $5not mid n+1$ and $n not equiv 0pmod 5$ and $nnot equiv -1 pmod 5$.



              ${-2, -1, 0, 1, 2}$ is a complete residue class of $5$ so $nequiv -2,-1, 0, 1, $ or $2 pmod 5$ and since $nnot equiv 0,-1$ then $n equiv -2, 2$ or $1 pmod 5$. So we are done.



              ....



              Alternatively (now that we know where we want to go)



              $nnot mid n(n+1) implies$



              $n not mid 0$ or $-1pmod 5implies$



              $n mid 1,2,$ or $-2pmod 5implies$



              One of $n-1, n-2, n+2equiv 0 pmod 5implies$



              $(n-1)(n-2)(n+2)equiv 0 pmod 5 implies$



              $ n^3 -n^2 - 4n + 4equiv 0 pmod 5implies$



              $n^3 - 6n^2 + n - 1equiv 0 pmod 5 implies $



              $5|n^3 - 6n^2 + n-1$



              ....



              Or a third way. $5$ must divide exactly on of $n,n+1, n+2, n+3, n=4$ so i$5$ doesn't divide $n$ or $n+1$ it divides $n+2, n+3, n+4$ which means $5|(n+2)(n+3)(n+4) = n^3 + 9n^2 + 26n + 24$.



              $n^3 + 9n^2 +26n + 24 -(n^3 - 6n^2 +n -1) =15n^2 + 25n +25 = 5(3n^2 + 5n + 5)$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $n^3 - 6n^2 + n-1 equiv n^3 - n^2 + n-1 pmod 5equiv$



                $(n^2 + 1)(n-1) equiv (n^2 -4)(n-1) pmod 5$



                $(n-2)(n+2)(n-1) pmod(5)$.



                If $n equiv 2,-2, 1 pmod 5$ then $n^3 - 5n^2 + n-1 equiv 0 pmod 5$ and $5|n^3 - 5n^2 + n-1$.



                As $5not mid n(n+1)$ and $5$ is prie $5not mid n$ and $5not mid n+1$ and $n not equiv 0pmod 5$ and $nnot equiv -1 pmod 5$.



                ${-2, -1, 0, 1, 2}$ is a complete residue class of $5$ so $nequiv -2,-1, 0, 1, $ or $2 pmod 5$ and since $nnot equiv 0,-1$ then $n equiv -2, 2$ or $1 pmod 5$. So we are done.



                ....



                Alternatively (now that we know where we want to go)



                $nnot mid n(n+1) implies$



                $n not mid 0$ or $-1pmod 5implies$



                $n mid 1,2,$ or $-2pmod 5implies$



                One of $n-1, n-2, n+2equiv 0 pmod 5implies$



                $(n-1)(n-2)(n+2)equiv 0 pmod 5 implies$



                $ n^3 -n^2 - 4n + 4equiv 0 pmod 5implies$



                $n^3 - 6n^2 + n - 1equiv 0 pmod 5 implies $



                $5|n^3 - 6n^2 + n-1$



                ....



                Or a third way. $5$ must divide exactly on of $n,n+1, n+2, n+3, n=4$ so i$5$ doesn't divide $n$ or $n+1$ it divides $n+2, n+3, n+4$ which means $5|(n+2)(n+3)(n+4) = n^3 + 9n^2 + 26n + 24$.



                $n^3 + 9n^2 +26n + 24 -(n^3 - 6n^2 +n -1) =15n^2 + 25n +25 = 5(3n^2 + 5n + 5)$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $n^3 - 6n^2 + n-1 equiv n^3 - n^2 + n-1 pmod 5equiv$



                  $(n^2 + 1)(n-1) equiv (n^2 -4)(n-1) pmod 5$



                  $(n-2)(n+2)(n-1) pmod(5)$.



                  If $n equiv 2,-2, 1 pmod 5$ then $n^3 - 5n^2 + n-1 equiv 0 pmod 5$ and $5|n^3 - 5n^2 + n-1$.



                  As $5not mid n(n+1)$ and $5$ is prie $5not mid n$ and $5not mid n+1$ and $n not equiv 0pmod 5$ and $nnot equiv -1 pmod 5$.



                  ${-2, -1, 0, 1, 2}$ is a complete residue class of $5$ so $nequiv -2,-1, 0, 1, $ or $2 pmod 5$ and since $nnot equiv 0,-1$ then $n equiv -2, 2$ or $1 pmod 5$. So we are done.



                  ....



                  Alternatively (now that we know where we want to go)



                  $nnot mid n(n+1) implies$



                  $n not mid 0$ or $-1pmod 5implies$



                  $n mid 1,2,$ or $-2pmod 5implies$



                  One of $n-1, n-2, n+2equiv 0 pmod 5implies$



                  $(n-1)(n-2)(n+2)equiv 0 pmod 5 implies$



                  $ n^3 -n^2 - 4n + 4equiv 0 pmod 5implies$



                  $n^3 - 6n^2 + n - 1equiv 0 pmod 5 implies $



                  $5|n^3 - 6n^2 + n-1$



                  ....



                  Or a third way. $5$ must divide exactly on of $n,n+1, n+2, n+3, n=4$ so i$5$ doesn't divide $n$ or $n+1$ it divides $n+2, n+3, n+4$ which means $5|(n+2)(n+3)(n+4) = n^3 + 9n^2 + 26n + 24$.



                  $n^3 + 9n^2 +26n + 24 -(n^3 - 6n^2 +n -1) =15n^2 + 25n +25 = 5(3n^2 + 5n + 5)$






                  share|cite|improve this answer









                  $endgroup$



                  $n^3 - 6n^2 + n-1 equiv n^3 - n^2 + n-1 pmod 5equiv$



                  $(n^2 + 1)(n-1) equiv (n^2 -4)(n-1) pmod 5$



                  $(n-2)(n+2)(n-1) pmod(5)$.



                  If $n equiv 2,-2, 1 pmod 5$ then $n^3 - 5n^2 + n-1 equiv 0 pmod 5$ and $5|n^3 - 5n^2 + n-1$.



                  As $5not mid n(n+1)$ and $5$ is prie $5not mid n$ and $5not mid n+1$ and $n not equiv 0pmod 5$ and $nnot equiv -1 pmod 5$.



                  ${-2, -1, 0, 1, 2}$ is a complete residue class of $5$ so $nequiv -2,-1, 0, 1, $ or $2 pmod 5$ and since $nnot equiv 0,-1$ then $n equiv -2, 2$ or $1 pmod 5$. So we are done.



                  ....



                  Alternatively (now that we know where we want to go)



                  $nnot mid n(n+1) implies$



                  $n not mid 0$ or $-1pmod 5implies$



                  $n mid 1,2,$ or $-2pmod 5implies$



                  One of $n-1, n-2, n+2equiv 0 pmod 5implies$



                  $(n-1)(n-2)(n+2)equiv 0 pmod 5 implies$



                  $ n^3 -n^2 - 4n + 4equiv 0 pmod 5implies$



                  $n^3 - 6n^2 + n - 1equiv 0 pmod 5 implies $



                  $5|n^3 - 6n^2 + n-1$



                  ....



                  Or a third way. $5$ must divide exactly on of $n,n+1, n+2, n+3, n=4$ so i$5$ doesn't divide $n$ or $n+1$ it divides $n+2, n+3, n+4$ which means $5|(n+2)(n+3)(n+4) = n^3 + 9n^2 + 26n + 24$.



                  $n^3 + 9n^2 +26n + 24 -(n^3 - 6n^2 +n -1) =15n^2 + 25n +25 = 5(3n^2 + 5n + 5)$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 11 at 23:06









                  fleabloodfleablood

                  69.4k22685




                  69.4k22685






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070357%2f5-nmid-nn1-implies-5-mid-n3-6n2n-1%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Mario Kart Wii

                      The Binding of Isaac: Rebirth/Afterbirth

                      What does “Dominus providebit” mean?