Prove that $binom{2n}{n}$ is not divisible by $p$
$begingroup$
Let $n$ be an integer greater than $5$. I would like to prove that if $p$ is a prime such that $ frac{2}{3}n < p leq n$ then $binom{2n}{n}$ is not a multiple of $p$.
I think I could assume that $binom{2n}{n}$ is a multiple of $p$ but I do not really know what to make of it.
elementary-number-theory binomial-coefficients divisibility
$endgroup$
add a comment |
$begingroup$
Let $n$ be an integer greater than $5$. I would like to prove that if $p$ is a prime such that $ frac{2}{3}n < p leq n$ then $binom{2n}{n}$ is not a multiple of $p$.
I think I could assume that $binom{2n}{n}$ is a multiple of $p$ but I do not really know what to make of it.
elementary-number-theory binomial-coefficients divisibility
$endgroup$
add a comment |
$begingroup$
Let $n$ be an integer greater than $5$. I would like to prove that if $p$ is a prime such that $ frac{2}{3}n < p leq n$ then $binom{2n}{n}$ is not a multiple of $p$.
I think I could assume that $binom{2n}{n}$ is a multiple of $p$ but I do not really know what to make of it.
elementary-number-theory binomial-coefficients divisibility
$endgroup$
Let $n$ be an integer greater than $5$. I would like to prove that if $p$ is a prime such that $ frac{2}{3}n < p leq n$ then $binom{2n}{n}$ is not a multiple of $p$.
I think I could assume that $binom{2n}{n}$ is a multiple of $p$ but I do not really know what to make of it.
elementary-number-theory binomial-coefficients divisibility
elementary-number-theory binomial-coefficients divisibility
edited Jan 11 at 21:11
Lorenzo B.
1,8402520
1,8402520
asked Sep 14 '15 at 17:02
OdileOdile
62648
62648
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Recall that $${2nchoose n}=frac{(2n)!}{n!n!} $$
and that the exponent $k=v_p(m!)$ of $p$ such that $p^kmid m!$ and $p^{k+1}mid m!$ is given by
$$ v_p(m!)=leftlfloor frac mprightrfloor+leftlfloor frac m{p^2}rightrfloor+leftlfloor frac m{p^3}rightrfloor+ldots$$
From the given conditions, $v_p(n!)=1+0+ldots =1$ and $v_p((2n)!)=2+lfloor frac {2}{p}rfloor+ldots$, which can only be $>2$ if $p=2$, but $p>frac23nge frac{10}3>2$. Hence $v_p$ of the binomial is $2-1-1=0$.
$endgroup$
$begingroup$
Great answer ! Thank you !!
$endgroup$
– Odile
Sep 14 '15 at 17:27
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1435289%2fprove-that-binom2nn-is-not-divisible-by-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall that $${2nchoose n}=frac{(2n)!}{n!n!} $$
and that the exponent $k=v_p(m!)$ of $p$ such that $p^kmid m!$ and $p^{k+1}mid m!$ is given by
$$ v_p(m!)=leftlfloor frac mprightrfloor+leftlfloor frac m{p^2}rightrfloor+leftlfloor frac m{p^3}rightrfloor+ldots$$
From the given conditions, $v_p(n!)=1+0+ldots =1$ and $v_p((2n)!)=2+lfloor frac {2}{p}rfloor+ldots$, which can only be $>2$ if $p=2$, but $p>frac23nge frac{10}3>2$. Hence $v_p$ of the binomial is $2-1-1=0$.
$endgroup$
$begingroup$
Great answer ! Thank you !!
$endgroup$
– Odile
Sep 14 '15 at 17:27
add a comment |
$begingroup$
Recall that $${2nchoose n}=frac{(2n)!}{n!n!} $$
and that the exponent $k=v_p(m!)$ of $p$ such that $p^kmid m!$ and $p^{k+1}mid m!$ is given by
$$ v_p(m!)=leftlfloor frac mprightrfloor+leftlfloor frac m{p^2}rightrfloor+leftlfloor frac m{p^3}rightrfloor+ldots$$
From the given conditions, $v_p(n!)=1+0+ldots =1$ and $v_p((2n)!)=2+lfloor frac {2}{p}rfloor+ldots$, which can only be $>2$ if $p=2$, but $p>frac23nge frac{10}3>2$. Hence $v_p$ of the binomial is $2-1-1=0$.
$endgroup$
$begingroup$
Great answer ! Thank you !!
$endgroup$
– Odile
Sep 14 '15 at 17:27
add a comment |
$begingroup$
Recall that $${2nchoose n}=frac{(2n)!}{n!n!} $$
and that the exponent $k=v_p(m!)$ of $p$ such that $p^kmid m!$ and $p^{k+1}mid m!$ is given by
$$ v_p(m!)=leftlfloor frac mprightrfloor+leftlfloor frac m{p^2}rightrfloor+leftlfloor frac m{p^3}rightrfloor+ldots$$
From the given conditions, $v_p(n!)=1+0+ldots =1$ and $v_p((2n)!)=2+lfloor frac {2}{p}rfloor+ldots$, which can only be $>2$ if $p=2$, but $p>frac23nge frac{10}3>2$. Hence $v_p$ of the binomial is $2-1-1=0$.
$endgroup$
Recall that $${2nchoose n}=frac{(2n)!}{n!n!} $$
and that the exponent $k=v_p(m!)$ of $p$ such that $p^kmid m!$ and $p^{k+1}mid m!$ is given by
$$ v_p(m!)=leftlfloor frac mprightrfloor+leftlfloor frac m{p^2}rightrfloor+leftlfloor frac m{p^3}rightrfloor+ldots$$
From the given conditions, $v_p(n!)=1+0+ldots =1$ and $v_p((2n)!)=2+lfloor frac {2}{p}rfloor+ldots$, which can only be $>2$ if $p=2$, but $p>frac23nge frac{10}3>2$. Hence $v_p$ of the binomial is $2-1-1=0$.
answered Sep 14 '15 at 17:15
Hagen von EitzenHagen von Eitzen
278k22269497
278k22269497
$begingroup$
Great answer ! Thank you !!
$endgroup$
– Odile
Sep 14 '15 at 17:27
add a comment |
$begingroup$
Great answer ! Thank you !!
$endgroup$
– Odile
Sep 14 '15 at 17:27
$begingroup$
Great answer ! Thank you !!
$endgroup$
– Odile
Sep 14 '15 at 17:27
$begingroup$
Great answer ! Thank you !!
$endgroup$
– Odile
Sep 14 '15 at 17:27
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1435289%2fprove-that-binom2nn-is-not-divisible-by-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown