Inverse Fourier transform of $frac{sin(aomega)}{(omega-a)^2}^2$.












1












$begingroup$


The exercise asks that we find the IFT of
$$frac{sin(aomega)}{(omega-a)^2}^2$$



Using the general formula for IFT yields integrals of the type:
$$intlimits_{-infty}^inftyfrac{cos(aomega)}{(omega-a)^2}$$ which has no apparent solution (at the known integrals tables i checked).



I suspect some of FT's properties can be of use (multiplication on frequency domain = convolution in time domain) but since i cant find a function whose FT is in terms of $sin(aomega)$ or $(omega-a)^2$ I can't figure it out.










share|cite|improve this question











$endgroup$












  • $begingroup$
    The code for $-infty$ is just -infty :)
    $endgroup$
    – Greg Martin
    Jan 11 at 18:16












  • $begingroup$
    @GregMartin It doesn't display correctly (i copy pasted -infty in the place of infty)
    $endgroup$
    – Manouil
    Jan 11 at 18:22










  • $begingroup$
    I've already edited it. The "trick" is to use curly brackets to enclose all that you want as a subscript. (The same aplies for superscripts, numerators, denominators, etc.)
    $endgroup$
    – Alejandro Nasif Salum
    Jan 11 at 18:35






  • 1




    $begingroup$
    What is the FT of $e^{-a|t|}$ ? So what is the FT of $frac{1}{(omega-a)^2}$ ? So what is the FT of $frac{e^{i b omega}}{(omega-a)^2}$ and $frac{sin(a omega)^2}{(omega-a)^2}$ ?
    $endgroup$
    – reuns
    Jan 11 at 18:38












  • $begingroup$
    @reuns i believe FT of $e^{-a|t|}$ is $frac{2jomega}{a^2-omega^2}$
    $endgroup$
    – Manouil
    Jan 11 at 19:06
















1












$begingroup$


The exercise asks that we find the IFT of
$$frac{sin(aomega)}{(omega-a)^2}^2$$



Using the general formula for IFT yields integrals of the type:
$$intlimits_{-infty}^inftyfrac{cos(aomega)}{(omega-a)^2}$$ which has no apparent solution (at the known integrals tables i checked).



I suspect some of FT's properties can be of use (multiplication on frequency domain = convolution in time domain) but since i cant find a function whose FT is in terms of $sin(aomega)$ or $(omega-a)^2$ I can't figure it out.










share|cite|improve this question











$endgroup$












  • $begingroup$
    The code for $-infty$ is just -infty :)
    $endgroup$
    – Greg Martin
    Jan 11 at 18:16












  • $begingroup$
    @GregMartin It doesn't display correctly (i copy pasted -infty in the place of infty)
    $endgroup$
    – Manouil
    Jan 11 at 18:22










  • $begingroup$
    I've already edited it. The "trick" is to use curly brackets to enclose all that you want as a subscript. (The same aplies for superscripts, numerators, denominators, etc.)
    $endgroup$
    – Alejandro Nasif Salum
    Jan 11 at 18:35






  • 1




    $begingroup$
    What is the FT of $e^{-a|t|}$ ? So what is the FT of $frac{1}{(omega-a)^2}$ ? So what is the FT of $frac{e^{i b omega}}{(omega-a)^2}$ and $frac{sin(a omega)^2}{(omega-a)^2}$ ?
    $endgroup$
    – reuns
    Jan 11 at 18:38












  • $begingroup$
    @reuns i believe FT of $e^{-a|t|}$ is $frac{2jomega}{a^2-omega^2}$
    $endgroup$
    – Manouil
    Jan 11 at 19:06














1












1








1





$begingroup$


The exercise asks that we find the IFT of
$$frac{sin(aomega)}{(omega-a)^2}^2$$



Using the general formula for IFT yields integrals of the type:
$$intlimits_{-infty}^inftyfrac{cos(aomega)}{(omega-a)^2}$$ which has no apparent solution (at the known integrals tables i checked).



I suspect some of FT's properties can be of use (multiplication on frequency domain = convolution in time domain) but since i cant find a function whose FT is in terms of $sin(aomega)$ or $(omega-a)^2$ I can't figure it out.










share|cite|improve this question











$endgroup$




The exercise asks that we find the IFT of
$$frac{sin(aomega)}{(omega-a)^2}^2$$



Using the general formula for IFT yields integrals of the type:
$$intlimits_{-infty}^inftyfrac{cos(aomega)}{(omega-a)^2}$$ which has no apparent solution (at the known integrals tables i checked).



I suspect some of FT's properties can be of use (multiplication on frequency domain = convolution in time domain) but since i cant find a function whose FT is in terms of $sin(aomega)$ or $(omega-a)^2$ I can't figure it out.







fourier-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 11 at 20:32









rtybase

10.7k21533




10.7k21533










asked Jan 11 at 17:45









ManouilManouil

93




93












  • $begingroup$
    The code for $-infty$ is just -infty :)
    $endgroup$
    – Greg Martin
    Jan 11 at 18:16












  • $begingroup$
    @GregMartin It doesn't display correctly (i copy pasted -infty in the place of infty)
    $endgroup$
    – Manouil
    Jan 11 at 18:22










  • $begingroup$
    I've already edited it. The "trick" is to use curly brackets to enclose all that you want as a subscript. (The same aplies for superscripts, numerators, denominators, etc.)
    $endgroup$
    – Alejandro Nasif Salum
    Jan 11 at 18:35






  • 1




    $begingroup$
    What is the FT of $e^{-a|t|}$ ? So what is the FT of $frac{1}{(omega-a)^2}$ ? So what is the FT of $frac{e^{i b omega}}{(omega-a)^2}$ and $frac{sin(a omega)^2}{(omega-a)^2}$ ?
    $endgroup$
    – reuns
    Jan 11 at 18:38












  • $begingroup$
    @reuns i believe FT of $e^{-a|t|}$ is $frac{2jomega}{a^2-omega^2}$
    $endgroup$
    – Manouil
    Jan 11 at 19:06


















  • $begingroup$
    The code for $-infty$ is just -infty :)
    $endgroup$
    – Greg Martin
    Jan 11 at 18:16












  • $begingroup$
    @GregMartin It doesn't display correctly (i copy pasted -infty in the place of infty)
    $endgroup$
    – Manouil
    Jan 11 at 18:22










  • $begingroup$
    I've already edited it. The "trick" is to use curly brackets to enclose all that you want as a subscript. (The same aplies for superscripts, numerators, denominators, etc.)
    $endgroup$
    – Alejandro Nasif Salum
    Jan 11 at 18:35






  • 1




    $begingroup$
    What is the FT of $e^{-a|t|}$ ? So what is the FT of $frac{1}{(omega-a)^2}$ ? So what is the FT of $frac{e^{i b omega}}{(omega-a)^2}$ and $frac{sin(a omega)^2}{(omega-a)^2}$ ?
    $endgroup$
    – reuns
    Jan 11 at 18:38












  • $begingroup$
    @reuns i believe FT of $e^{-a|t|}$ is $frac{2jomega}{a^2-omega^2}$
    $endgroup$
    – Manouil
    Jan 11 at 19:06
















$begingroup$
The code for $-infty$ is just -infty :)
$endgroup$
– Greg Martin
Jan 11 at 18:16






$begingroup$
The code for $-infty$ is just -infty :)
$endgroup$
– Greg Martin
Jan 11 at 18:16














$begingroup$
@GregMartin It doesn't display correctly (i copy pasted -infty in the place of infty)
$endgroup$
– Manouil
Jan 11 at 18:22




$begingroup$
@GregMartin It doesn't display correctly (i copy pasted -infty in the place of infty)
$endgroup$
– Manouil
Jan 11 at 18:22












$begingroup$
I've already edited it. The "trick" is to use curly brackets to enclose all that you want as a subscript. (The same aplies for superscripts, numerators, denominators, etc.)
$endgroup$
– Alejandro Nasif Salum
Jan 11 at 18:35




$begingroup$
I've already edited it. The "trick" is to use curly brackets to enclose all that you want as a subscript. (The same aplies for superscripts, numerators, denominators, etc.)
$endgroup$
– Alejandro Nasif Salum
Jan 11 at 18:35




1




1




$begingroup$
What is the FT of $e^{-a|t|}$ ? So what is the FT of $frac{1}{(omega-a)^2}$ ? So what is the FT of $frac{e^{i b omega}}{(omega-a)^2}$ and $frac{sin(a omega)^2}{(omega-a)^2}$ ?
$endgroup$
– reuns
Jan 11 at 18:38






$begingroup$
What is the FT of $e^{-a|t|}$ ? So what is the FT of $frac{1}{(omega-a)^2}$ ? So what is the FT of $frac{e^{i b omega}}{(omega-a)^2}$ and $frac{sin(a omega)^2}{(omega-a)^2}$ ?
$endgroup$
– reuns
Jan 11 at 18:38














$begingroup$
@reuns i believe FT of $e^{-a|t|}$ is $frac{2jomega}{a^2-omega^2}$
$endgroup$
– Manouil
Jan 11 at 19:06




$begingroup$
@reuns i believe FT of $e^{-a|t|}$ is $frac{2jomega}{a^2-omega^2}$
$endgroup$
– Manouil
Jan 11 at 19:06










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070133%2finverse-fourier-transform-of-frac-sina-omega-omega-a22%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070133%2finverse-fourier-transform-of-frac-sina-omega-omega-a22%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?