Definite integral involving polylogarithm












5












$begingroup$


I was trying to compute the value of
$$sum_{k=1}^infty frac{H_k}{k^4}$$
and I was able to reduce it down to
$$-zeta(2)zeta(3)+int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
However, I can't figure out how to compute the value of the integral
$$int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
How can I find its value?



Don't try integration by parts. This integral is what I ended up with after integration by parts.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
    $endgroup$
    – reuns
    Nov 24 '17 at 23:56












  • $begingroup$
    @reuns Sorry, but I'm not very experienced in complex analysis.
    $endgroup$
    – Frpzzd
    Nov 25 '17 at 0:04






  • 1




    $begingroup$
    There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
    $endgroup$
    – Professor Vector
    Nov 25 '17 at 14:59
















5












$begingroup$


I was trying to compute the value of
$$sum_{k=1}^infty frac{H_k}{k^4}$$
and I was able to reduce it down to
$$-zeta(2)zeta(3)+int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
However, I can't figure out how to compute the value of the integral
$$int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
How can I find its value?



Don't try integration by parts. This integral is what I ended up with after integration by parts.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
    $endgroup$
    – reuns
    Nov 24 '17 at 23:56












  • $begingroup$
    @reuns Sorry, but I'm not very experienced in complex analysis.
    $endgroup$
    – Frpzzd
    Nov 25 '17 at 0:04






  • 1




    $begingroup$
    There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
    $endgroup$
    – Professor Vector
    Nov 25 '17 at 14:59














5












5








5


0



$begingroup$


I was trying to compute the value of
$$sum_{k=1}^infty frac{H_k}{k^4}$$
and I was able to reduce it down to
$$-zeta(2)zeta(3)+int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
However, I can't figure out how to compute the value of the integral
$$int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
How can I find its value?



Don't try integration by parts. This integral is what I ended up with after integration by parts.










share|cite|improve this question









$endgroup$




I was trying to compute the value of
$$sum_{k=1}^infty frac{H_k}{k^4}$$
and I was able to reduce it down to
$$-zeta(2)zeta(3)+int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
However, I can't figure out how to compute the value of the integral
$$int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
How can I find its value?



Don't try integration by parts. This integral is what I ended up with after integration by parts.







definite-integrals polylogarithm






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 24 '17 at 22:37









FrpzzdFrpzzd

22.7k840108




22.7k840108












  • $begingroup$
    Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
    $endgroup$
    – reuns
    Nov 24 '17 at 23:56












  • $begingroup$
    @reuns Sorry, but I'm not very experienced in complex analysis.
    $endgroup$
    – Frpzzd
    Nov 25 '17 at 0:04






  • 1




    $begingroup$
    There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
    $endgroup$
    – Professor Vector
    Nov 25 '17 at 14:59


















  • $begingroup$
    Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
    $endgroup$
    – reuns
    Nov 24 '17 at 23:56












  • $begingroup$
    @reuns Sorry, but I'm not very experienced in complex analysis.
    $endgroup$
    – Frpzzd
    Nov 25 '17 at 0:04






  • 1




    $begingroup$
    There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
    $endgroup$
    – Professor Vector
    Nov 25 '17 at 14:59
















$begingroup$
Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
$endgroup$
– reuns
Nov 24 '17 at 23:56






$begingroup$
Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
$endgroup$
– reuns
Nov 24 '17 at 23:56














$begingroup$
@reuns Sorry, but I'm not very experienced in complex analysis.
$endgroup$
– Frpzzd
Nov 25 '17 at 0:04




$begingroup$
@reuns Sorry, but I'm not very experienced in complex analysis.
$endgroup$
– Frpzzd
Nov 25 '17 at 0:04




1




1




$begingroup$
There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
$endgroup$
– Professor Vector
Nov 25 '17 at 14:59




$begingroup$
There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
$endgroup$
– Professor Vector
Nov 25 '17 at 14:59










5 Answers
5






active

oldest

votes


















2












$begingroup$

The explicit values of all the Euler sums $sum_{ngeq 1}frac{H_n}{n^s}$ are well known and related to convolutions of $zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.



Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $sum_{ngeq 1}H_n z^n = -frac{log(1-z)}{1-z}$.
By partial fraction decomposition
$$ frac{1}{(n+a)(n+b)}=frac{frac{1}{b-a}}{n+a}+frac{frac{1}{a-b}}{n+b}$$
hence
$$ sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = -int_{0}^{1}frac{log(1-x)}{1-x}left[frac{x^{a-1}}{b-a}+frac{x^{b-1}}{a-b}right],dx$$
where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is:
$$sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2(a-b)}$$
hence by considering the limit as $bto a$:
$$ sum_{ngeq 1}frac{H_n}{(n+a)^2}=H_{a-1}psi'(a)-tfrac{1}{2}psi''(a). $$
In order to compute $sum_{ngeq 1}frac{H_n}{n^s}$, it is enough to apply $left(lim_{ato 0^+}frac{d^{s-2}}{da^{s-2}}right)$ to both sides of the previous line. In the $s=4$ case we get:
$$ sum_{ngeq 1}frac{H_n}{n^4}=frac{1}{6}lim_{ato 0^+}left[3,psi'(a),psi''(a)+H_{a-1},psi'''(a)-tfrac{1}{2}psi^{IV}(a)right]=color{blue}{3,zeta(5)-zeta(2),zeta(3)}. $$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
    $endgroup$
    – Frpzzd
    Dec 22 '17 at 18:03



















3












$begingroup$

I wonder if there is not a problem somewhere.



I agree that $$sum_{k=1}^infty frac{H_k}{k^4}=-zeta(2)zeta(3)+text{something}$$ Setting $$text{something}=int_0^1 frac{text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically
$$sum_{k=1}^infty frac{H_k}{k^4}=1.13348$$ making $$text{something}=3.11078$$ which is identified as $3zeta(5)$.



It could be good that you describe the intermediate steps.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    You are correct, and Euler already knew that. =D
    $endgroup$
    – Professor Vector
    Nov 25 '17 at 13:16










  • $begingroup$
    The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
    $endgroup$
    – Professor Vector
    Nov 25 '17 at 20:05



















1












$begingroup$

Since $H_k=H_{k-1}+frac1k$, we have $$sum^infty_{k=1}frac{H_k}{k^4}=sum^infty_{k=1}frac{H_{k-1}}{k^4}+sum^infty_{k=1}frac1{k^5}
=sum^infty_{k=1}frac{H_{k-1}}{k^4}+zeta(5).tag1$$
If we define $$sigma_h(s,t)=sum^infty_{n=1}frac1{n^t}sum^{n-1}_{k=1}frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously
$$2sigma_h(1,m)=m,zeta(m+1)-sum^{m-2}_{k=1}zeta(m-k),zeta(k+1)$$ for $mge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $sigma_h(1,4)$, and the above formula easily gives $sigma_h(1,4)=2,zeta(5)-zeta(2),zeta(3)$, and (1) gives the final result
$$sum^infty_{k=1}frac{H_k}{k^4}=3,zeta(5)-zeta(2),zeta(3).$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    To find your Euler sum I will make use of the following result which can be found here
    $$sum_{k=1}^{infty} dfrac{H_k^{(p)}}{k^q}=frac{(-1)^{q+1}}{Gamma(q)} int_{0}^{1} frac{ln^{q - 1} (u) text{Li}_{p}(u)}{u (1 - u)}{du}.$$
    Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.



    So when $p = 1$ and $q = 4$ we have
    $$sum^infty_{k = 1} frac{H_k}{k^4} = -frac{1}{Gamma (4)} int^1_0 frac{ln^3 (u) , text{Li}_1 (u)}{u (1 - u)} , du = frac{1}{6} int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du,$$
    where $text{Li}_1 (u) = - ln (1 - u)$ has been used.



    The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $text{B}(x,y)$ as follows. As
    $$text{B}(x,y) = int^1_0 t^{x - 1} (1 - t)^{y - 1} , dt,$$
    we have
    $$lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du.$$
    Thus
    begin{align*}
    sum^infty_{k = 1} frac{H_k}{k^4} &= frac{1}{6} lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = frac{1}{6} left [-frac{3}{4} psi^{(4)} (1) + 3 psi^{(2)}(1) psi^{(1)}(1) right ].
    end{align*}
    Here $psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are:
    $$psi^{(4)}(1) = - 24 zeta(5), ,, psi^{(2)}(1) = -2 zeta (3), ,,psi^{(1)}(1) = zeta (2),$$
    and yields
    $$sum^infty_{k = 1} frac{H_k}{k^4} = 3 zeta (5) - zeta (2) zeta (3).$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$

      begin{align}
      sum_{k = 1}^{infty}{H_{k} over k^{4}} & =
      sum_{k = 1}^{infty}H_{k}
      overbrace{bracks{-,{1 over 6}int_{0}^{1}ln^{3}pars{x},x^{k - 1},dd x}}
      ^{ds{1 over k^{4}}}
      \[5mm] & =
      -,{1 over 6}int_{0}^{1}ln^{3}pars{x}
      overbrace{sum_{k = 1}^{infty}H_{k},x^{k}}
      ^{ds{-,{lnpars{1 - x} over 1 - x}}} ,{dd x over x}
      \[5mm] & =
      {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over xpars{1 - x}}
      ,dd x
      \[5mm] & =
      {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x +
      {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over 1 - x},dd x
      \[5mm] & =
      {1 over 6}
      underbrace{int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x}
      _{ds{mc{I}_{1}}} +
      {1 over 6}
      underbrace{int_{0}^{1}{ln^{3}pars{1 - x}lnpars{x} over x},dd x}
      _{ds{mc{I}_{2}}}
      \[5mm] & = {mc{I}_{1} + mc{I}_{2} over 6}label{1}tag{1}
      end{align}




      $ds{Large mc{I}_{1} = ?}$.
      begin{align}
      mc{I}_{1} & =
      -int_{0}^{1}mrm{Li}_{2}'pars{x}ln^{3}pars{x},dd x =
      3int_{0}^{1}mrm{Li}_{3}'pars{x}ln^{2}pars{x},dd x =
      -6int_{0}^{1}mrm{Li}_{4}'pars{x}lnpars{x},dd x
      \[5mm] & =
      6int_{0}^{1}mrm{Li}_{5}'pars{x},dd x =
      6,mrm{Li}_{5}pars{1} implies
      bbx{large mc{I}_{1} = 6,zetapars{5}}label{2}tag{2}
      end{align}



      $ds{Large mc{I}_{2} = ?}$.
      begin{align}
      mc{I}_{2} & =
      left.partiald[3]{}{mu}partiald{}{nu}
      int_{0}^{1}{bracks{pars{1 - x}^{mu} - 1}x^{nu} over x},dd x
      ,rightvert_{ mu = 0,, nu = 0}
      \[5mm] & =
      left.partiald[3]{}{mu}partiald{}{nu}
      int_{0}^{1}bracks{pars{1 - x}^{mu}x^{nu - 1} - x^{nu - 1}}dd x
      ,rightvert_{ mu = 0,, nu = 0}
      \[5mm] & =
      partiald[3]{}{mu}partiald{}{nu}
      bracks{{Gammapars{mu + 1}Gammapars{nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
      \[5mm] & =
      partiald[3]{}{mu}partiald{}{nu}
      braces{{Gammapars{mu + 1}bracks{Gammapars{nu + 1}/nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
      \[5mm] & =
      partiald[3]{}{mu}partiald{}{nu}
      bracks{{Gammapars{mu + 1}Gammapars{nu + 1} -
      Gammapars{mu + nu + 1} over
      nu,Gammapars{mu + nu + 1}}}_{ mu = 0,, nu = 0}
      end{align}

      begin{equation}
      mbox{This limit is a 'cumbersome task'. Its value is}
      bbx{largemc{I}_{2} = 12,zetapars{5} - pi^{2}zetapars{3}}
      label{3}tag{3}
      end{equation}



      eqref{1}, eqref{2} and eqref{3} lead to




      $$
      bbx{sum_{k = 1}^{infty}{H_{k} over k^{4}} =
      3,zetapars{5} - {1 over 6},pi^{2},zetapars{3}}
      $$






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2535896%2fdefinite-integral-involving-polylogarithm%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        The explicit values of all the Euler sums $sum_{ngeq 1}frac{H_n}{n^s}$ are well known and related to convolutions of $zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.



        Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $sum_{ngeq 1}H_n z^n = -frac{log(1-z)}{1-z}$.
        By partial fraction decomposition
        $$ frac{1}{(n+a)(n+b)}=frac{frac{1}{b-a}}{n+a}+frac{frac{1}{a-b}}{n+b}$$
        hence
        $$ sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = -int_{0}^{1}frac{log(1-x)}{1-x}left[frac{x^{a-1}}{b-a}+frac{x^{b-1}}{a-b}right],dx$$
        where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is:
        $$sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2(a-b)}$$
        hence by considering the limit as $bto a$:
        $$ sum_{ngeq 1}frac{H_n}{(n+a)^2}=H_{a-1}psi'(a)-tfrac{1}{2}psi''(a). $$
        In order to compute $sum_{ngeq 1}frac{H_n}{n^s}$, it is enough to apply $left(lim_{ato 0^+}frac{d^{s-2}}{da^{s-2}}right)$ to both sides of the previous line. In the $s=4$ case we get:
        $$ sum_{ngeq 1}frac{H_n}{n^4}=frac{1}{6}lim_{ato 0^+}left[3,psi'(a),psi''(a)+H_{a-1},psi'''(a)-tfrac{1}{2}psi^{IV}(a)right]=color{blue}{3,zeta(5)-zeta(2),zeta(3)}. $$






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
          $endgroup$
          – Frpzzd
          Dec 22 '17 at 18:03
















        2












        $begingroup$

        The explicit values of all the Euler sums $sum_{ngeq 1}frac{H_n}{n^s}$ are well known and related to convolutions of $zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.



        Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $sum_{ngeq 1}H_n z^n = -frac{log(1-z)}{1-z}$.
        By partial fraction decomposition
        $$ frac{1}{(n+a)(n+b)}=frac{frac{1}{b-a}}{n+a}+frac{frac{1}{a-b}}{n+b}$$
        hence
        $$ sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = -int_{0}^{1}frac{log(1-x)}{1-x}left[frac{x^{a-1}}{b-a}+frac{x^{b-1}}{a-b}right],dx$$
        where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is:
        $$sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2(a-b)}$$
        hence by considering the limit as $bto a$:
        $$ sum_{ngeq 1}frac{H_n}{(n+a)^2}=H_{a-1}psi'(a)-tfrac{1}{2}psi''(a). $$
        In order to compute $sum_{ngeq 1}frac{H_n}{n^s}$, it is enough to apply $left(lim_{ato 0^+}frac{d^{s-2}}{da^{s-2}}right)$ to both sides of the previous line. In the $s=4$ case we get:
        $$ sum_{ngeq 1}frac{H_n}{n^4}=frac{1}{6}lim_{ato 0^+}left[3,psi'(a),psi''(a)+H_{a-1},psi'''(a)-tfrac{1}{2}psi^{IV}(a)right]=color{blue}{3,zeta(5)-zeta(2),zeta(3)}. $$






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
          $endgroup$
          – Frpzzd
          Dec 22 '17 at 18:03














        2












        2








        2





        $begingroup$

        The explicit values of all the Euler sums $sum_{ngeq 1}frac{H_n}{n^s}$ are well known and related to convolutions of $zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.



        Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $sum_{ngeq 1}H_n z^n = -frac{log(1-z)}{1-z}$.
        By partial fraction decomposition
        $$ frac{1}{(n+a)(n+b)}=frac{frac{1}{b-a}}{n+a}+frac{frac{1}{a-b}}{n+b}$$
        hence
        $$ sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = -int_{0}^{1}frac{log(1-x)}{1-x}left[frac{x^{a-1}}{b-a}+frac{x^{b-1}}{a-b}right],dx$$
        where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is:
        $$sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2(a-b)}$$
        hence by considering the limit as $bto a$:
        $$ sum_{ngeq 1}frac{H_n}{(n+a)^2}=H_{a-1}psi'(a)-tfrac{1}{2}psi''(a). $$
        In order to compute $sum_{ngeq 1}frac{H_n}{n^s}$, it is enough to apply $left(lim_{ato 0^+}frac{d^{s-2}}{da^{s-2}}right)$ to both sides of the previous line. In the $s=4$ case we get:
        $$ sum_{ngeq 1}frac{H_n}{n^4}=frac{1}{6}lim_{ato 0^+}left[3,psi'(a),psi''(a)+H_{a-1},psi'''(a)-tfrac{1}{2}psi^{IV}(a)right]=color{blue}{3,zeta(5)-zeta(2),zeta(3)}. $$






        share|cite|improve this answer









        $endgroup$



        The explicit values of all the Euler sums $sum_{ngeq 1}frac{H_n}{n^s}$ are well known and related to convolutions of $zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.



        Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $sum_{ngeq 1}H_n z^n = -frac{log(1-z)}{1-z}$.
        By partial fraction decomposition
        $$ frac{1}{(n+a)(n+b)}=frac{frac{1}{b-a}}{n+a}+frac{frac{1}{a-b}}{n+b}$$
        hence
        $$ sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = -int_{0}^{1}frac{log(1-x)}{1-x}left[frac{x^{a-1}}{b-a}+frac{x^{b-1}}{a-b}right],dx$$
        where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is:
        $$sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2(a-b)}$$
        hence by considering the limit as $bto a$:
        $$ sum_{ngeq 1}frac{H_n}{(n+a)^2}=H_{a-1}psi'(a)-tfrac{1}{2}psi''(a). $$
        In order to compute $sum_{ngeq 1}frac{H_n}{n^s}$, it is enough to apply $left(lim_{ato 0^+}frac{d^{s-2}}{da^{s-2}}right)$ to both sides of the previous line. In the $s=4$ case we get:
        $$ sum_{ngeq 1}frac{H_n}{n^4}=frac{1}{6}lim_{ato 0^+}left[3,psi'(a),psi''(a)+H_{a-1},psi'''(a)-tfrac{1}{2}psi^{IV}(a)right]=color{blue}{3,zeta(5)-zeta(2),zeta(3)}. $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 25 '17 at 16:50









        Jack D'AurizioJack D'Aurizio

        289k33281660




        289k33281660












        • $begingroup$
          Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
          $endgroup$
          – Frpzzd
          Dec 22 '17 at 18:03


















        • $begingroup$
          Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
          $endgroup$
          – Frpzzd
          Dec 22 '17 at 18:03
















        $begingroup$
        Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
        $endgroup$
        – Frpzzd
        Dec 22 '17 at 18:03




        $begingroup$
        Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
        $endgroup$
        – Frpzzd
        Dec 22 '17 at 18:03











        3












        $begingroup$

        I wonder if there is not a problem somewhere.



        I agree that $$sum_{k=1}^infty frac{H_k}{k^4}=-zeta(2)zeta(3)+text{something}$$ Setting $$text{something}=int_0^1 frac{text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically
        $$sum_{k=1}^infty frac{H_k}{k^4}=1.13348$$ making $$text{something}=3.11078$$ which is identified as $3zeta(5)$.



        It could be good that you describe the intermediate steps.






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          You are correct, and Euler already knew that. =D
          $endgroup$
          – Professor Vector
          Nov 25 '17 at 13:16










        • $begingroup$
          The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
          $endgroup$
          – Professor Vector
          Nov 25 '17 at 20:05
















        3












        $begingroup$

        I wonder if there is not a problem somewhere.



        I agree that $$sum_{k=1}^infty frac{H_k}{k^4}=-zeta(2)zeta(3)+text{something}$$ Setting $$text{something}=int_0^1 frac{text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically
        $$sum_{k=1}^infty frac{H_k}{k^4}=1.13348$$ making $$text{something}=3.11078$$ which is identified as $3zeta(5)$.



        It could be good that you describe the intermediate steps.






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          You are correct, and Euler already knew that. =D
          $endgroup$
          – Professor Vector
          Nov 25 '17 at 13:16










        • $begingroup$
          The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
          $endgroup$
          – Professor Vector
          Nov 25 '17 at 20:05














        3












        3








        3





        $begingroup$

        I wonder if there is not a problem somewhere.



        I agree that $$sum_{k=1}^infty frac{H_k}{k^4}=-zeta(2)zeta(3)+text{something}$$ Setting $$text{something}=int_0^1 frac{text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically
        $$sum_{k=1}^infty frac{H_k}{k^4}=1.13348$$ making $$text{something}=3.11078$$ which is identified as $3zeta(5)$.



        It could be good that you describe the intermediate steps.






        share|cite|improve this answer









        $endgroup$



        I wonder if there is not a problem somewhere.



        I agree that $$sum_{k=1}^infty frac{H_k}{k^4}=-zeta(2)zeta(3)+text{something}$$ Setting $$text{something}=int_0^1 frac{text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically
        $$sum_{k=1}^infty frac{H_k}{k^4}=1.13348$$ making $$text{something}=3.11078$$ which is identified as $3zeta(5)$.



        It could be good that you describe the intermediate steps.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 25 '17 at 3:36









        Claude LeiboviciClaude Leibovici

        120k1157132




        120k1157132












        • $begingroup$
          You are correct, and Euler already knew that. =D
          $endgroup$
          – Professor Vector
          Nov 25 '17 at 13:16










        • $begingroup$
          The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
          $endgroup$
          – Professor Vector
          Nov 25 '17 at 20:05


















        • $begingroup$
          You are correct, and Euler already knew that. =D
          $endgroup$
          – Professor Vector
          Nov 25 '17 at 13:16










        • $begingroup$
          The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
          $endgroup$
          – Professor Vector
          Nov 25 '17 at 20:05
















        $begingroup$
        You are correct, and Euler already knew that. =D
        $endgroup$
        – Professor Vector
        Nov 25 '17 at 13:16




        $begingroup$
        You are correct, and Euler already knew that. =D
        $endgroup$
        – Professor Vector
        Nov 25 '17 at 13:16












        $begingroup$
        The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
        $endgroup$
        – Professor Vector
        Nov 25 '17 at 20:05




        $begingroup$
        The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
        $endgroup$
        – Professor Vector
        Nov 25 '17 at 20:05











        1












        $begingroup$

        Since $H_k=H_{k-1}+frac1k$, we have $$sum^infty_{k=1}frac{H_k}{k^4}=sum^infty_{k=1}frac{H_{k-1}}{k^4}+sum^infty_{k=1}frac1{k^5}
        =sum^infty_{k=1}frac{H_{k-1}}{k^4}+zeta(5).tag1$$
        If we define $$sigma_h(s,t)=sum^infty_{n=1}frac1{n^t}sum^{n-1}_{k=1}frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously
        $$2sigma_h(1,m)=m,zeta(m+1)-sum^{m-2}_{k=1}zeta(m-k),zeta(k+1)$$ for $mge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $sigma_h(1,4)$, and the above formula easily gives $sigma_h(1,4)=2,zeta(5)-zeta(2),zeta(3)$, and (1) gives the final result
        $$sum^infty_{k=1}frac{H_k}{k^4}=3,zeta(5)-zeta(2),zeta(3).$$






        share|cite|improve this answer









        $endgroup$


















          1












          $begingroup$

          Since $H_k=H_{k-1}+frac1k$, we have $$sum^infty_{k=1}frac{H_k}{k^4}=sum^infty_{k=1}frac{H_{k-1}}{k^4}+sum^infty_{k=1}frac1{k^5}
          =sum^infty_{k=1}frac{H_{k-1}}{k^4}+zeta(5).tag1$$
          If we define $$sigma_h(s,t)=sum^infty_{n=1}frac1{n^t}sum^{n-1}_{k=1}frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously
          $$2sigma_h(1,m)=m,zeta(m+1)-sum^{m-2}_{k=1}zeta(m-k),zeta(k+1)$$ for $mge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $sigma_h(1,4)$, and the above formula easily gives $sigma_h(1,4)=2,zeta(5)-zeta(2),zeta(3)$, and (1) gives the final result
          $$sum^infty_{k=1}frac{H_k}{k^4}=3,zeta(5)-zeta(2),zeta(3).$$






          share|cite|improve this answer









          $endgroup$
















            1












            1








            1





            $begingroup$

            Since $H_k=H_{k-1}+frac1k$, we have $$sum^infty_{k=1}frac{H_k}{k^4}=sum^infty_{k=1}frac{H_{k-1}}{k^4}+sum^infty_{k=1}frac1{k^5}
            =sum^infty_{k=1}frac{H_{k-1}}{k^4}+zeta(5).tag1$$
            If we define $$sigma_h(s,t)=sum^infty_{n=1}frac1{n^t}sum^{n-1}_{k=1}frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously
            $$2sigma_h(1,m)=m,zeta(m+1)-sum^{m-2}_{k=1}zeta(m-k),zeta(k+1)$$ for $mge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $sigma_h(1,4)$, and the above formula easily gives $sigma_h(1,4)=2,zeta(5)-zeta(2),zeta(3)$, and (1) gives the final result
            $$sum^infty_{k=1}frac{H_k}{k^4}=3,zeta(5)-zeta(2),zeta(3).$$






            share|cite|improve this answer









            $endgroup$



            Since $H_k=H_{k-1}+frac1k$, we have $$sum^infty_{k=1}frac{H_k}{k^4}=sum^infty_{k=1}frac{H_{k-1}}{k^4}+sum^infty_{k=1}frac1{k^5}
            =sum^infty_{k=1}frac{H_{k-1}}{k^4}+zeta(5).tag1$$
            If we define $$sigma_h(s,t)=sum^infty_{n=1}frac1{n^t}sum^{n-1}_{k=1}frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously
            $$2sigma_h(1,m)=m,zeta(m+1)-sum^{m-2}_{k=1}zeta(m-k),zeta(k+1)$$ for $mge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $sigma_h(1,4)$, and the above formula easily gives $sigma_h(1,4)=2,zeta(5)-zeta(2),zeta(3)$, and (1) gives the final result
            $$sum^infty_{k=1}frac{H_k}{k^4}=3,zeta(5)-zeta(2),zeta(3).$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 25 '17 at 13:14









            Professor VectorProfessor Vector

            11.1k11333




            11.1k11333























                1












                $begingroup$

                To find your Euler sum I will make use of the following result which can be found here
                $$sum_{k=1}^{infty} dfrac{H_k^{(p)}}{k^q}=frac{(-1)^{q+1}}{Gamma(q)} int_{0}^{1} frac{ln^{q - 1} (u) text{Li}_{p}(u)}{u (1 - u)}{du}.$$
                Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.



                So when $p = 1$ and $q = 4$ we have
                $$sum^infty_{k = 1} frac{H_k}{k^4} = -frac{1}{Gamma (4)} int^1_0 frac{ln^3 (u) , text{Li}_1 (u)}{u (1 - u)} , du = frac{1}{6} int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du,$$
                where $text{Li}_1 (u) = - ln (1 - u)$ has been used.



                The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $text{B}(x,y)$ as follows. As
                $$text{B}(x,y) = int^1_0 t^{x - 1} (1 - t)^{y - 1} , dt,$$
                we have
                $$lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du.$$
                Thus
                begin{align*}
                sum^infty_{k = 1} frac{H_k}{k^4} &= frac{1}{6} lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = frac{1}{6} left [-frac{3}{4} psi^{(4)} (1) + 3 psi^{(2)}(1) psi^{(1)}(1) right ].
                end{align*}
                Here $psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are:
                $$psi^{(4)}(1) = - 24 zeta(5), ,, psi^{(2)}(1) = -2 zeta (3), ,,psi^{(1)}(1) = zeta (2),$$
                and yields
                $$sum^infty_{k = 1} frac{H_k}{k^4} = 3 zeta (5) - zeta (2) zeta (3).$$






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  To find your Euler sum I will make use of the following result which can be found here
                  $$sum_{k=1}^{infty} dfrac{H_k^{(p)}}{k^q}=frac{(-1)^{q+1}}{Gamma(q)} int_{0}^{1} frac{ln^{q - 1} (u) text{Li}_{p}(u)}{u (1 - u)}{du}.$$
                  Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.



                  So when $p = 1$ and $q = 4$ we have
                  $$sum^infty_{k = 1} frac{H_k}{k^4} = -frac{1}{Gamma (4)} int^1_0 frac{ln^3 (u) , text{Li}_1 (u)}{u (1 - u)} , du = frac{1}{6} int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du,$$
                  where $text{Li}_1 (u) = - ln (1 - u)$ has been used.



                  The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $text{B}(x,y)$ as follows. As
                  $$text{B}(x,y) = int^1_0 t^{x - 1} (1 - t)^{y - 1} , dt,$$
                  we have
                  $$lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du.$$
                  Thus
                  begin{align*}
                  sum^infty_{k = 1} frac{H_k}{k^4} &= frac{1}{6} lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = frac{1}{6} left [-frac{3}{4} psi^{(4)} (1) + 3 psi^{(2)}(1) psi^{(1)}(1) right ].
                  end{align*}
                  Here $psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are:
                  $$psi^{(4)}(1) = - 24 zeta(5), ,, psi^{(2)}(1) = -2 zeta (3), ,,psi^{(1)}(1) = zeta (2),$$
                  and yields
                  $$sum^infty_{k = 1} frac{H_k}{k^4} = 3 zeta (5) - zeta (2) zeta (3).$$






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    To find your Euler sum I will make use of the following result which can be found here
                    $$sum_{k=1}^{infty} dfrac{H_k^{(p)}}{k^q}=frac{(-1)^{q+1}}{Gamma(q)} int_{0}^{1} frac{ln^{q - 1} (u) text{Li}_{p}(u)}{u (1 - u)}{du}.$$
                    Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.



                    So when $p = 1$ and $q = 4$ we have
                    $$sum^infty_{k = 1} frac{H_k}{k^4} = -frac{1}{Gamma (4)} int^1_0 frac{ln^3 (u) , text{Li}_1 (u)}{u (1 - u)} , du = frac{1}{6} int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du,$$
                    where $text{Li}_1 (u) = - ln (1 - u)$ has been used.



                    The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $text{B}(x,y)$ as follows. As
                    $$text{B}(x,y) = int^1_0 t^{x - 1} (1 - t)^{y - 1} , dt,$$
                    we have
                    $$lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du.$$
                    Thus
                    begin{align*}
                    sum^infty_{k = 1} frac{H_k}{k^4} &= frac{1}{6} lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = frac{1}{6} left [-frac{3}{4} psi^{(4)} (1) + 3 psi^{(2)}(1) psi^{(1)}(1) right ].
                    end{align*}
                    Here $psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are:
                    $$psi^{(4)}(1) = - 24 zeta(5), ,, psi^{(2)}(1) = -2 zeta (3), ,,psi^{(1)}(1) = zeta (2),$$
                    and yields
                    $$sum^infty_{k = 1} frac{H_k}{k^4} = 3 zeta (5) - zeta (2) zeta (3).$$






                    share|cite|improve this answer









                    $endgroup$



                    To find your Euler sum I will make use of the following result which can be found here
                    $$sum_{k=1}^{infty} dfrac{H_k^{(p)}}{k^q}=frac{(-1)^{q+1}}{Gamma(q)} int_{0}^{1} frac{ln^{q - 1} (u) text{Li}_{p}(u)}{u (1 - u)}{du}.$$
                    Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.



                    So when $p = 1$ and $q = 4$ we have
                    $$sum^infty_{k = 1} frac{H_k}{k^4} = -frac{1}{Gamma (4)} int^1_0 frac{ln^3 (u) , text{Li}_1 (u)}{u (1 - u)} , du = frac{1}{6} int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du,$$
                    where $text{Li}_1 (u) = - ln (1 - u)$ has been used.



                    The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $text{B}(x,y)$ as follows. As
                    $$text{B}(x,y) = int^1_0 t^{x - 1} (1 - t)^{y - 1} , dt,$$
                    we have
                    $$lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du.$$
                    Thus
                    begin{align*}
                    sum^infty_{k = 1} frac{H_k}{k^4} &= frac{1}{6} lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = frac{1}{6} left [-frac{3}{4} psi^{(4)} (1) + 3 psi^{(2)}(1) psi^{(1)}(1) right ].
                    end{align*}
                    Here $psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are:
                    $$psi^{(4)}(1) = - 24 zeta(5), ,, psi^{(2)}(1) = -2 zeta (3), ,,psi^{(1)}(1) = zeta (2),$$
                    and yields
                    $$sum^infty_{k = 1} frac{H_k}{k^4} = 3 zeta (5) - zeta (2) zeta (3).$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 6 '17 at 8:39









                    omegadotomegadot

                    5,2022727




                    5,2022727























                        1












                        $begingroup$

                        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                        newcommand{dd}{mathrm{d}}
                        newcommand{ds}[1]{displaystyle{#1}}
                        newcommand{expo}[1]{,mathrm{e}^{#1},}
                        newcommand{ic}{mathrm{i}}
                        newcommand{mc}[1]{mathcal{#1}}
                        newcommand{mrm}[1]{mathrm{#1}}
                        newcommand{pars}[1]{left(,{#1},right)}
                        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                        newcommand{verts}[1]{leftvert,{#1},rightvert}$

                        begin{align}
                        sum_{k = 1}^{infty}{H_{k} over k^{4}} & =
                        sum_{k = 1}^{infty}H_{k}
                        overbrace{bracks{-,{1 over 6}int_{0}^{1}ln^{3}pars{x},x^{k - 1},dd x}}
                        ^{ds{1 over k^{4}}}
                        \[5mm] & =
                        -,{1 over 6}int_{0}^{1}ln^{3}pars{x}
                        overbrace{sum_{k = 1}^{infty}H_{k},x^{k}}
                        ^{ds{-,{lnpars{1 - x} over 1 - x}}} ,{dd x over x}
                        \[5mm] & =
                        {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over xpars{1 - x}}
                        ,dd x
                        \[5mm] & =
                        {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x +
                        {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over 1 - x},dd x
                        \[5mm] & =
                        {1 over 6}
                        underbrace{int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x}
                        _{ds{mc{I}_{1}}} +
                        {1 over 6}
                        underbrace{int_{0}^{1}{ln^{3}pars{1 - x}lnpars{x} over x},dd x}
                        _{ds{mc{I}_{2}}}
                        \[5mm] & = {mc{I}_{1} + mc{I}_{2} over 6}label{1}tag{1}
                        end{align}




                        $ds{Large mc{I}_{1} = ?}$.
                        begin{align}
                        mc{I}_{1} & =
                        -int_{0}^{1}mrm{Li}_{2}'pars{x}ln^{3}pars{x},dd x =
                        3int_{0}^{1}mrm{Li}_{3}'pars{x}ln^{2}pars{x},dd x =
                        -6int_{0}^{1}mrm{Li}_{4}'pars{x}lnpars{x},dd x
                        \[5mm] & =
                        6int_{0}^{1}mrm{Li}_{5}'pars{x},dd x =
                        6,mrm{Li}_{5}pars{1} implies
                        bbx{large mc{I}_{1} = 6,zetapars{5}}label{2}tag{2}
                        end{align}



                        $ds{Large mc{I}_{2} = ?}$.
                        begin{align}
                        mc{I}_{2} & =
                        left.partiald[3]{}{mu}partiald{}{nu}
                        int_{0}^{1}{bracks{pars{1 - x}^{mu} - 1}x^{nu} over x},dd x
                        ,rightvert_{ mu = 0,, nu = 0}
                        \[5mm] & =
                        left.partiald[3]{}{mu}partiald{}{nu}
                        int_{0}^{1}bracks{pars{1 - x}^{mu}x^{nu - 1} - x^{nu - 1}}dd x
                        ,rightvert_{ mu = 0,, nu = 0}
                        \[5mm] & =
                        partiald[3]{}{mu}partiald{}{nu}
                        bracks{{Gammapars{mu + 1}Gammapars{nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
                        \[5mm] & =
                        partiald[3]{}{mu}partiald{}{nu}
                        braces{{Gammapars{mu + 1}bracks{Gammapars{nu + 1}/nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
                        \[5mm] & =
                        partiald[3]{}{mu}partiald{}{nu}
                        bracks{{Gammapars{mu + 1}Gammapars{nu + 1} -
                        Gammapars{mu + nu + 1} over
                        nu,Gammapars{mu + nu + 1}}}_{ mu = 0,, nu = 0}
                        end{align}

                        begin{equation}
                        mbox{This limit is a 'cumbersome task'. Its value is}
                        bbx{largemc{I}_{2} = 12,zetapars{5} - pi^{2}zetapars{3}}
                        label{3}tag{3}
                        end{equation}



                        eqref{1}, eqref{2} and eqref{3} lead to




                        $$
                        bbx{sum_{k = 1}^{infty}{H_{k} over k^{4}} =
                        3,zetapars{5} - {1 over 6},pi^{2},zetapars{3}}
                        $$






                        share|cite|improve this answer











                        $endgroup$


















                          1












                          $begingroup$

                          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                          newcommand{dd}{mathrm{d}}
                          newcommand{ds}[1]{displaystyle{#1}}
                          newcommand{expo}[1]{,mathrm{e}^{#1},}
                          newcommand{ic}{mathrm{i}}
                          newcommand{mc}[1]{mathcal{#1}}
                          newcommand{mrm}[1]{mathrm{#1}}
                          newcommand{pars}[1]{left(,{#1},right)}
                          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                          newcommand{verts}[1]{leftvert,{#1},rightvert}$

                          begin{align}
                          sum_{k = 1}^{infty}{H_{k} over k^{4}} & =
                          sum_{k = 1}^{infty}H_{k}
                          overbrace{bracks{-,{1 over 6}int_{0}^{1}ln^{3}pars{x},x^{k - 1},dd x}}
                          ^{ds{1 over k^{4}}}
                          \[5mm] & =
                          -,{1 over 6}int_{0}^{1}ln^{3}pars{x}
                          overbrace{sum_{k = 1}^{infty}H_{k},x^{k}}
                          ^{ds{-,{lnpars{1 - x} over 1 - x}}} ,{dd x over x}
                          \[5mm] & =
                          {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over xpars{1 - x}}
                          ,dd x
                          \[5mm] & =
                          {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x +
                          {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over 1 - x},dd x
                          \[5mm] & =
                          {1 over 6}
                          underbrace{int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x}
                          _{ds{mc{I}_{1}}} +
                          {1 over 6}
                          underbrace{int_{0}^{1}{ln^{3}pars{1 - x}lnpars{x} over x},dd x}
                          _{ds{mc{I}_{2}}}
                          \[5mm] & = {mc{I}_{1} + mc{I}_{2} over 6}label{1}tag{1}
                          end{align}




                          $ds{Large mc{I}_{1} = ?}$.
                          begin{align}
                          mc{I}_{1} & =
                          -int_{0}^{1}mrm{Li}_{2}'pars{x}ln^{3}pars{x},dd x =
                          3int_{0}^{1}mrm{Li}_{3}'pars{x}ln^{2}pars{x},dd x =
                          -6int_{0}^{1}mrm{Li}_{4}'pars{x}lnpars{x},dd x
                          \[5mm] & =
                          6int_{0}^{1}mrm{Li}_{5}'pars{x},dd x =
                          6,mrm{Li}_{5}pars{1} implies
                          bbx{large mc{I}_{1} = 6,zetapars{5}}label{2}tag{2}
                          end{align}



                          $ds{Large mc{I}_{2} = ?}$.
                          begin{align}
                          mc{I}_{2} & =
                          left.partiald[3]{}{mu}partiald{}{nu}
                          int_{0}^{1}{bracks{pars{1 - x}^{mu} - 1}x^{nu} over x},dd x
                          ,rightvert_{ mu = 0,, nu = 0}
                          \[5mm] & =
                          left.partiald[3]{}{mu}partiald{}{nu}
                          int_{0}^{1}bracks{pars{1 - x}^{mu}x^{nu - 1} - x^{nu - 1}}dd x
                          ,rightvert_{ mu = 0,, nu = 0}
                          \[5mm] & =
                          partiald[3]{}{mu}partiald{}{nu}
                          bracks{{Gammapars{mu + 1}Gammapars{nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
                          \[5mm] & =
                          partiald[3]{}{mu}partiald{}{nu}
                          braces{{Gammapars{mu + 1}bracks{Gammapars{nu + 1}/nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
                          \[5mm] & =
                          partiald[3]{}{mu}partiald{}{nu}
                          bracks{{Gammapars{mu + 1}Gammapars{nu + 1} -
                          Gammapars{mu + nu + 1} over
                          nu,Gammapars{mu + nu + 1}}}_{ mu = 0,, nu = 0}
                          end{align}

                          begin{equation}
                          mbox{This limit is a 'cumbersome task'. Its value is}
                          bbx{largemc{I}_{2} = 12,zetapars{5} - pi^{2}zetapars{3}}
                          label{3}tag{3}
                          end{equation}



                          eqref{1}, eqref{2} and eqref{3} lead to




                          $$
                          bbx{sum_{k = 1}^{infty}{H_{k} over k^{4}} =
                          3,zetapars{5} - {1 over 6},pi^{2},zetapars{3}}
                          $$






                          share|cite|improve this answer











                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                            newcommand{dd}{mathrm{d}}
                            newcommand{ds}[1]{displaystyle{#1}}
                            newcommand{expo}[1]{,mathrm{e}^{#1},}
                            newcommand{ic}{mathrm{i}}
                            newcommand{mc}[1]{mathcal{#1}}
                            newcommand{mrm}[1]{mathrm{#1}}
                            newcommand{pars}[1]{left(,{#1},right)}
                            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                            newcommand{verts}[1]{leftvert,{#1},rightvert}$

                            begin{align}
                            sum_{k = 1}^{infty}{H_{k} over k^{4}} & =
                            sum_{k = 1}^{infty}H_{k}
                            overbrace{bracks{-,{1 over 6}int_{0}^{1}ln^{3}pars{x},x^{k - 1},dd x}}
                            ^{ds{1 over k^{4}}}
                            \[5mm] & =
                            -,{1 over 6}int_{0}^{1}ln^{3}pars{x}
                            overbrace{sum_{k = 1}^{infty}H_{k},x^{k}}
                            ^{ds{-,{lnpars{1 - x} over 1 - x}}} ,{dd x over x}
                            \[5mm] & =
                            {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over xpars{1 - x}}
                            ,dd x
                            \[5mm] & =
                            {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x +
                            {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over 1 - x},dd x
                            \[5mm] & =
                            {1 over 6}
                            underbrace{int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x}
                            _{ds{mc{I}_{1}}} +
                            {1 over 6}
                            underbrace{int_{0}^{1}{ln^{3}pars{1 - x}lnpars{x} over x},dd x}
                            _{ds{mc{I}_{2}}}
                            \[5mm] & = {mc{I}_{1} + mc{I}_{2} over 6}label{1}tag{1}
                            end{align}




                            $ds{Large mc{I}_{1} = ?}$.
                            begin{align}
                            mc{I}_{1} & =
                            -int_{0}^{1}mrm{Li}_{2}'pars{x}ln^{3}pars{x},dd x =
                            3int_{0}^{1}mrm{Li}_{3}'pars{x}ln^{2}pars{x},dd x =
                            -6int_{0}^{1}mrm{Li}_{4}'pars{x}lnpars{x},dd x
                            \[5mm] & =
                            6int_{0}^{1}mrm{Li}_{5}'pars{x},dd x =
                            6,mrm{Li}_{5}pars{1} implies
                            bbx{large mc{I}_{1} = 6,zetapars{5}}label{2}tag{2}
                            end{align}



                            $ds{Large mc{I}_{2} = ?}$.
                            begin{align}
                            mc{I}_{2} & =
                            left.partiald[3]{}{mu}partiald{}{nu}
                            int_{0}^{1}{bracks{pars{1 - x}^{mu} - 1}x^{nu} over x},dd x
                            ,rightvert_{ mu = 0,, nu = 0}
                            \[5mm] & =
                            left.partiald[3]{}{mu}partiald{}{nu}
                            int_{0}^{1}bracks{pars{1 - x}^{mu}x^{nu - 1} - x^{nu - 1}}dd x
                            ,rightvert_{ mu = 0,, nu = 0}
                            \[5mm] & =
                            partiald[3]{}{mu}partiald{}{nu}
                            bracks{{Gammapars{mu + 1}Gammapars{nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
                            \[5mm] & =
                            partiald[3]{}{mu}partiald{}{nu}
                            braces{{Gammapars{mu + 1}bracks{Gammapars{nu + 1}/nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
                            \[5mm] & =
                            partiald[3]{}{mu}partiald{}{nu}
                            bracks{{Gammapars{mu + 1}Gammapars{nu + 1} -
                            Gammapars{mu + nu + 1} over
                            nu,Gammapars{mu + nu + 1}}}_{ mu = 0,, nu = 0}
                            end{align}

                            begin{equation}
                            mbox{This limit is a 'cumbersome task'. Its value is}
                            bbx{largemc{I}_{2} = 12,zetapars{5} - pi^{2}zetapars{3}}
                            label{3}tag{3}
                            end{equation}



                            eqref{1}, eqref{2} and eqref{3} lead to




                            $$
                            bbx{sum_{k = 1}^{infty}{H_{k} over k^{4}} =
                            3,zetapars{5} - {1 over 6},pi^{2},zetapars{3}}
                            $$






                            share|cite|improve this answer











                            $endgroup$



                            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                            newcommand{dd}{mathrm{d}}
                            newcommand{ds}[1]{displaystyle{#1}}
                            newcommand{expo}[1]{,mathrm{e}^{#1},}
                            newcommand{ic}{mathrm{i}}
                            newcommand{mc}[1]{mathcal{#1}}
                            newcommand{mrm}[1]{mathrm{#1}}
                            newcommand{pars}[1]{left(,{#1},right)}
                            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                            newcommand{verts}[1]{leftvert,{#1},rightvert}$

                            begin{align}
                            sum_{k = 1}^{infty}{H_{k} over k^{4}} & =
                            sum_{k = 1}^{infty}H_{k}
                            overbrace{bracks{-,{1 over 6}int_{0}^{1}ln^{3}pars{x},x^{k - 1},dd x}}
                            ^{ds{1 over k^{4}}}
                            \[5mm] & =
                            -,{1 over 6}int_{0}^{1}ln^{3}pars{x}
                            overbrace{sum_{k = 1}^{infty}H_{k},x^{k}}
                            ^{ds{-,{lnpars{1 - x} over 1 - x}}} ,{dd x over x}
                            \[5mm] & =
                            {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over xpars{1 - x}}
                            ,dd x
                            \[5mm] & =
                            {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x +
                            {1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over 1 - x},dd x
                            \[5mm] & =
                            {1 over 6}
                            underbrace{int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x}
                            _{ds{mc{I}_{1}}} +
                            {1 over 6}
                            underbrace{int_{0}^{1}{ln^{3}pars{1 - x}lnpars{x} over x},dd x}
                            _{ds{mc{I}_{2}}}
                            \[5mm] & = {mc{I}_{1} + mc{I}_{2} over 6}label{1}tag{1}
                            end{align}




                            $ds{Large mc{I}_{1} = ?}$.
                            begin{align}
                            mc{I}_{1} & =
                            -int_{0}^{1}mrm{Li}_{2}'pars{x}ln^{3}pars{x},dd x =
                            3int_{0}^{1}mrm{Li}_{3}'pars{x}ln^{2}pars{x},dd x =
                            -6int_{0}^{1}mrm{Li}_{4}'pars{x}lnpars{x},dd x
                            \[5mm] & =
                            6int_{0}^{1}mrm{Li}_{5}'pars{x},dd x =
                            6,mrm{Li}_{5}pars{1} implies
                            bbx{large mc{I}_{1} = 6,zetapars{5}}label{2}tag{2}
                            end{align}



                            $ds{Large mc{I}_{2} = ?}$.
                            begin{align}
                            mc{I}_{2} & =
                            left.partiald[3]{}{mu}partiald{}{nu}
                            int_{0}^{1}{bracks{pars{1 - x}^{mu} - 1}x^{nu} over x},dd x
                            ,rightvert_{ mu = 0,, nu = 0}
                            \[5mm] & =
                            left.partiald[3]{}{mu}partiald{}{nu}
                            int_{0}^{1}bracks{pars{1 - x}^{mu}x^{nu - 1} - x^{nu - 1}}dd x
                            ,rightvert_{ mu = 0,, nu = 0}
                            \[5mm] & =
                            partiald[3]{}{mu}partiald{}{nu}
                            bracks{{Gammapars{mu + 1}Gammapars{nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
                            \[5mm] & =
                            partiald[3]{}{mu}partiald{}{nu}
                            braces{{Gammapars{mu + 1}bracks{Gammapars{nu + 1}/nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
                            \[5mm] & =
                            partiald[3]{}{mu}partiald{}{nu}
                            bracks{{Gammapars{mu + 1}Gammapars{nu + 1} -
                            Gammapars{mu + nu + 1} over
                            nu,Gammapars{mu + nu + 1}}}_{ mu = 0,, nu = 0}
                            end{align}

                            begin{equation}
                            mbox{This limit is a 'cumbersome task'. Its value is}
                            bbx{largemc{I}_{2} = 12,zetapars{5} - pi^{2}zetapars{3}}
                            label{3}tag{3}
                            end{equation}



                            eqref{1}, eqref{2} and eqref{3} lead to




                            $$
                            bbx{sum_{k = 1}^{infty}{H_{k} over k^{4}} =
                            3,zetapars{5} - {1 over 6},pi^{2},zetapars{3}}
                            $$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jan 11 at 19:22

























                            answered Dec 14 '17 at 22:33









                            Felix MarinFelix Marin

                            67.5k7107141




                            67.5k7107141






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2535896%2fdefinite-integral-involving-polylogarithm%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Mario Kart Wii

                                The Binding of Isaac: Rebirth/Afterbirth

                                What does “Dominus providebit” mean?