Definite integral involving polylogarithm
$begingroup$
I was trying to compute the value of
$$sum_{k=1}^infty frac{H_k}{k^4}$$
and I was able to reduce it down to
$$-zeta(2)zeta(3)+int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
However, I can't figure out how to compute the value of the integral
$$int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
How can I find its value?
Don't try integration by parts. This integral is what I ended up with after integration by parts.
definite-integrals polylogarithm
$endgroup$
add a comment |
$begingroup$
I was trying to compute the value of
$$sum_{k=1}^infty frac{H_k}{k^4}$$
and I was able to reduce it down to
$$-zeta(2)zeta(3)+int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
However, I can't figure out how to compute the value of the integral
$$int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
How can I find its value?
Don't try integration by parts. This integral is what I ended up with after integration by parts.
definite-integrals polylogarithm
$endgroup$
$begingroup$
Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
$endgroup$
– reuns
Nov 24 '17 at 23:56
$begingroup$
@reuns Sorry, but I'm not very experienced in complex analysis.
$endgroup$
– Frpzzd
Nov 25 '17 at 0:04
1
$begingroup$
There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
$endgroup$
– Professor Vector
Nov 25 '17 at 14:59
add a comment |
$begingroup$
I was trying to compute the value of
$$sum_{k=1}^infty frac{H_k}{k^4}$$
and I was able to reduce it down to
$$-zeta(2)zeta(3)+int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
However, I can't figure out how to compute the value of the integral
$$int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
How can I find its value?
Don't try integration by parts. This integral is what I ended up with after integration by parts.
definite-integrals polylogarithm
$endgroup$
I was trying to compute the value of
$$sum_{k=1}^infty frac{H_k}{k^4}$$
and I was able to reduce it down to
$$-zeta(2)zeta(3)+int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
However, I can't figure out how to compute the value of the integral
$$int_0^1 frac{text{Li}_2^2(x)}{x}dx$$
How can I find its value?
Don't try integration by parts. This integral is what I ended up with after integration by parts.
definite-integrals polylogarithm
definite-integrals polylogarithm
asked Nov 24 '17 at 22:37
FrpzzdFrpzzd
22.7k840108
22.7k840108
$begingroup$
Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
$endgroup$
– reuns
Nov 24 '17 at 23:56
$begingroup$
@reuns Sorry, but I'm not very experienced in complex analysis.
$endgroup$
– Frpzzd
Nov 25 '17 at 0:04
1
$begingroup$
There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
$endgroup$
– Professor Vector
Nov 25 '17 at 14:59
add a comment |
$begingroup$
Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
$endgroup$
– reuns
Nov 24 '17 at 23:56
$begingroup$
@reuns Sorry, but I'm not very experienced in complex analysis.
$endgroup$
– Frpzzd
Nov 25 '17 at 0:04
1
$begingroup$
There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
$endgroup$
– Professor Vector
Nov 25 '17 at 14:59
$begingroup$
Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
$endgroup$
– reuns
Nov 24 '17 at 23:56
$begingroup$
Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
$endgroup$
– reuns
Nov 24 '17 at 23:56
$begingroup$
@reuns Sorry, but I'm not very experienced in complex analysis.
$endgroup$
– Frpzzd
Nov 25 '17 at 0:04
$begingroup$
@reuns Sorry, but I'm not very experienced in complex analysis.
$endgroup$
– Frpzzd
Nov 25 '17 at 0:04
1
1
$begingroup$
There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
$endgroup$
– Professor Vector
Nov 25 '17 at 14:59
$begingroup$
There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
$endgroup$
– Professor Vector
Nov 25 '17 at 14:59
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
The explicit values of all the Euler sums $sum_{ngeq 1}frac{H_n}{n^s}$ are well known and related to convolutions of $zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.
Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $sum_{ngeq 1}H_n z^n = -frac{log(1-z)}{1-z}$.
By partial fraction decomposition
$$ frac{1}{(n+a)(n+b)}=frac{frac{1}{b-a}}{n+a}+frac{frac{1}{a-b}}{n+b}$$
hence
$$ sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = -int_{0}^{1}frac{log(1-x)}{1-x}left[frac{x^{a-1}}{b-a}+frac{x^{b-1}}{a-b}right],dx$$
where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is:
$$sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2(a-b)}$$
hence by considering the limit as $bto a$:
$$ sum_{ngeq 1}frac{H_n}{(n+a)^2}=H_{a-1}psi'(a)-tfrac{1}{2}psi''(a). $$
In order to compute $sum_{ngeq 1}frac{H_n}{n^s}$, it is enough to apply $left(lim_{ato 0^+}frac{d^{s-2}}{da^{s-2}}right)$ to both sides of the previous line. In the $s=4$ case we get:
$$ sum_{ngeq 1}frac{H_n}{n^4}=frac{1}{6}lim_{ato 0^+}left[3,psi'(a),psi''(a)+H_{a-1},psi'''(a)-tfrac{1}{2}psi^{IV}(a)right]=color{blue}{3,zeta(5)-zeta(2),zeta(3)}. $$
$endgroup$
$begingroup$
Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
$endgroup$
– Frpzzd
Dec 22 '17 at 18:03
add a comment |
$begingroup$
I wonder if there is not a problem somewhere.
I agree that $$sum_{k=1}^infty frac{H_k}{k^4}=-zeta(2)zeta(3)+text{something}$$ Setting $$text{something}=int_0^1 frac{text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically
$$sum_{k=1}^infty frac{H_k}{k^4}=1.13348$$ making $$text{something}=3.11078$$ which is identified as $3zeta(5)$.
It could be good that you describe the intermediate steps.
$endgroup$
$begingroup$
You are correct, and Euler already knew that. =D
$endgroup$
– Professor Vector
Nov 25 '17 at 13:16
$begingroup$
The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
$endgroup$
– Professor Vector
Nov 25 '17 at 20:05
add a comment |
$begingroup$
Since $H_k=H_{k-1}+frac1k$, we have $$sum^infty_{k=1}frac{H_k}{k^4}=sum^infty_{k=1}frac{H_{k-1}}{k^4}+sum^infty_{k=1}frac1{k^5}
=sum^infty_{k=1}frac{H_{k-1}}{k^4}+zeta(5).tag1$$
If we define $$sigma_h(s,t)=sum^infty_{n=1}frac1{n^t}sum^{n-1}_{k=1}frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously
$$2sigma_h(1,m)=m,zeta(m+1)-sum^{m-2}_{k=1}zeta(m-k),zeta(k+1)$$ for $mge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $sigma_h(1,4)$, and the above formula easily gives $sigma_h(1,4)=2,zeta(5)-zeta(2),zeta(3)$, and (1) gives the final result
$$sum^infty_{k=1}frac{H_k}{k^4}=3,zeta(5)-zeta(2),zeta(3).$$
$endgroup$
add a comment |
$begingroup$
To find your Euler sum I will make use of the following result which can be found here
$$sum_{k=1}^{infty} dfrac{H_k^{(p)}}{k^q}=frac{(-1)^{q+1}}{Gamma(q)} int_{0}^{1} frac{ln^{q - 1} (u) text{Li}_{p}(u)}{u (1 - u)}{du}.$$
Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.
So when $p = 1$ and $q = 4$ we have
$$sum^infty_{k = 1} frac{H_k}{k^4} = -frac{1}{Gamma (4)} int^1_0 frac{ln^3 (u) , text{Li}_1 (u)}{u (1 - u)} , du = frac{1}{6} int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du,$$
where $text{Li}_1 (u) = - ln (1 - u)$ has been used.
The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $text{B}(x,y)$ as follows. As
$$text{B}(x,y) = int^1_0 t^{x - 1} (1 - t)^{y - 1} , dt,$$
we have
$$lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du.$$
Thus
begin{align*}
sum^infty_{k = 1} frac{H_k}{k^4} &= frac{1}{6} lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = frac{1}{6} left [-frac{3}{4} psi^{(4)} (1) + 3 psi^{(2)}(1) psi^{(1)}(1) right ].
end{align*}
Here $psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are:
$$psi^{(4)}(1) = - 24 zeta(5), ,, psi^{(2)}(1) = -2 zeta (3), ,,psi^{(1)}(1) = zeta (2),$$
and yields
$$sum^infty_{k = 1} frac{H_k}{k^4} = 3 zeta (5) - zeta (2) zeta (3).$$
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
sum_{k = 1}^{infty}{H_{k} over k^{4}} & =
sum_{k = 1}^{infty}H_{k}
overbrace{bracks{-,{1 over 6}int_{0}^{1}ln^{3}pars{x},x^{k - 1},dd x}}
^{ds{1 over k^{4}}}
\[5mm] & =
-,{1 over 6}int_{0}^{1}ln^{3}pars{x}
overbrace{sum_{k = 1}^{infty}H_{k},x^{k}}
^{ds{-,{lnpars{1 - x} over 1 - x}}} ,{dd x over x}
\[5mm] & =
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over xpars{1 - x}}
,dd x
\[5mm] & =
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x +
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over 1 - x},dd x
\[5mm] & =
{1 over 6}
underbrace{int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x}
_{ds{mc{I}_{1}}} +
{1 over 6}
underbrace{int_{0}^{1}{ln^{3}pars{1 - x}lnpars{x} over x},dd x}
_{ds{mc{I}_{2}}}
\[5mm] & = {mc{I}_{1} + mc{I}_{2} over 6}label{1}tag{1}
end{align}
$ds{Large mc{I}_{1} = ?}$.
begin{align}
mc{I}_{1} & =
-int_{0}^{1}mrm{Li}_{2}'pars{x}ln^{3}pars{x},dd x =
3int_{0}^{1}mrm{Li}_{3}'pars{x}ln^{2}pars{x},dd x =
-6int_{0}^{1}mrm{Li}_{4}'pars{x}lnpars{x},dd x
\[5mm] & =
6int_{0}^{1}mrm{Li}_{5}'pars{x},dd x =
6,mrm{Li}_{5}pars{1} implies
bbx{large mc{I}_{1} = 6,zetapars{5}}label{2}tag{2}
end{align}
$ds{Large mc{I}_{2} = ?}$.
begin{align}
mc{I}_{2} & =
left.partiald[3]{}{mu}partiald{}{nu}
int_{0}^{1}{bracks{pars{1 - x}^{mu} - 1}x^{nu} over x},dd x
,rightvert_{ mu = 0,, nu = 0}
\[5mm] & =
left.partiald[3]{}{mu}partiald{}{nu}
int_{0}^{1}bracks{pars{1 - x}^{mu}x^{nu - 1} - x^{nu - 1}}dd x
,rightvert_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
bracks{{Gammapars{mu + 1}Gammapars{nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
braces{{Gammapars{mu + 1}bracks{Gammapars{nu + 1}/nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
bracks{{Gammapars{mu + 1}Gammapars{nu + 1} -
Gammapars{mu + nu + 1} over
nu,Gammapars{mu + nu + 1}}}_{ mu = 0,, nu = 0}
end{align}
begin{equation}
mbox{This limit is a 'cumbersome task'. Its value is}
bbx{largemc{I}_{2} = 12,zetapars{5} - pi^{2}zetapars{3}}
label{3}tag{3}
end{equation}
eqref{1}, eqref{2} and eqref{3} lead to
$$
bbx{sum_{k = 1}^{infty}{H_{k} over k^{4}} =
3,zetapars{5} - {1 over 6},pi^{2},zetapars{3}}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2535896%2fdefinite-integral-involving-polylogarithm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The explicit values of all the Euler sums $sum_{ngeq 1}frac{H_n}{n^s}$ are well known and related to convolutions of $zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.
Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $sum_{ngeq 1}H_n z^n = -frac{log(1-z)}{1-z}$.
By partial fraction decomposition
$$ frac{1}{(n+a)(n+b)}=frac{frac{1}{b-a}}{n+a}+frac{frac{1}{a-b}}{n+b}$$
hence
$$ sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = -int_{0}^{1}frac{log(1-x)}{1-x}left[frac{x^{a-1}}{b-a}+frac{x^{b-1}}{a-b}right],dx$$
where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is:
$$sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2(a-b)}$$
hence by considering the limit as $bto a$:
$$ sum_{ngeq 1}frac{H_n}{(n+a)^2}=H_{a-1}psi'(a)-tfrac{1}{2}psi''(a). $$
In order to compute $sum_{ngeq 1}frac{H_n}{n^s}$, it is enough to apply $left(lim_{ato 0^+}frac{d^{s-2}}{da^{s-2}}right)$ to both sides of the previous line. In the $s=4$ case we get:
$$ sum_{ngeq 1}frac{H_n}{n^4}=frac{1}{6}lim_{ato 0^+}left[3,psi'(a),psi''(a)+H_{a-1},psi'''(a)-tfrac{1}{2}psi^{IV}(a)right]=color{blue}{3,zeta(5)-zeta(2),zeta(3)}. $$
$endgroup$
$begingroup$
Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
$endgroup$
– Frpzzd
Dec 22 '17 at 18:03
add a comment |
$begingroup$
The explicit values of all the Euler sums $sum_{ngeq 1}frac{H_n}{n^s}$ are well known and related to convolutions of $zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.
Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $sum_{ngeq 1}H_n z^n = -frac{log(1-z)}{1-z}$.
By partial fraction decomposition
$$ frac{1}{(n+a)(n+b)}=frac{frac{1}{b-a}}{n+a}+frac{frac{1}{a-b}}{n+b}$$
hence
$$ sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = -int_{0}^{1}frac{log(1-x)}{1-x}left[frac{x^{a-1}}{b-a}+frac{x^{b-1}}{a-b}right],dx$$
where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is:
$$sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2(a-b)}$$
hence by considering the limit as $bto a$:
$$ sum_{ngeq 1}frac{H_n}{(n+a)^2}=H_{a-1}psi'(a)-tfrac{1}{2}psi''(a). $$
In order to compute $sum_{ngeq 1}frac{H_n}{n^s}$, it is enough to apply $left(lim_{ato 0^+}frac{d^{s-2}}{da^{s-2}}right)$ to both sides of the previous line. In the $s=4$ case we get:
$$ sum_{ngeq 1}frac{H_n}{n^4}=frac{1}{6}lim_{ato 0^+}left[3,psi'(a),psi''(a)+H_{a-1},psi'''(a)-tfrac{1}{2}psi^{IV}(a)right]=color{blue}{3,zeta(5)-zeta(2),zeta(3)}. $$
$endgroup$
$begingroup$
Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
$endgroup$
– Frpzzd
Dec 22 '17 at 18:03
add a comment |
$begingroup$
The explicit values of all the Euler sums $sum_{ngeq 1}frac{H_n}{n^s}$ are well known and related to convolutions of $zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.
Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $sum_{ngeq 1}H_n z^n = -frac{log(1-z)}{1-z}$.
By partial fraction decomposition
$$ frac{1}{(n+a)(n+b)}=frac{frac{1}{b-a}}{n+a}+frac{frac{1}{a-b}}{n+b}$$
hence
$$ sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = -int_{0}^{1}frac{log(1-x)}{1-x}left[frac{x^{a-1}}{b-a}+frac{x^{b-1}}{a-b}right],dx$$
where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is:
$$sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2(a-b)}$$
hence by considering the limit as $bto a$:
$$ sum_{ngeq 1}frac{H_n}{(n+a)^2}=H_{a-1}psi'(a)-tfrac{1}{2}psi''(a). $$
In order to compute $sum_{ngeq 1}frac{H_n}{n^s}$, it is enough to apply $left(lim_{ato 0^+}frac{d^{s-2}}{da^{s-2}}right)$ to both sides of the previous line. In the $s=4$ case we get:
$$ sum_{ngeq 1}frac{H_n}{n^4}=frac{1}{6}lim_{ato 0^+}left[3,psi'(a),psi''(a)+H_{a-1},psi'''(a)-tfrac{1}{2}psi^{IV}(a)right]=color{blue}{3,zeta(5)-zeta(2),zeta(3)}. $$
$endgroup$
The explicit values of all the Euler sums $sum_{ngeq 1}frac{H_n}{n^s}$ are well known and related to convolutions of $zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.
Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $sum_{ngeq 1}H_n z^n = -frac{log(1-z)}{1-z}$.
By partial fraction decomposition
$$ frac{1}{(n+a)(n+b)}=frac{frac{1}{b-a}}{n+a}+frac{frac{1}{a-b}}{n+b}$$
hence
$$ sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = -int_{0}^{1}frac{log(1-x)}{1-x}left[frac{x^{a-1}}{b-a}+frac{x^{b-1}}{a-b}right],dx$$
where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is:
$$sum_{ngeq 1}frac{H_n}{(n+a)(n+b)} = frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2(a-b)}$$
hence by considering the limit as $bto a$:
$$ sum_{ngeq 1}frac{H_n}{(n+a)^2}=H_{a-1}psi'(a)-tfrac{1}{2}psi''(a). $$
In order to compute $sum_{ngeq 1}frac{H_n}{n^s}$, it is enough to apply $left(lim_{ato 0^+}frac{d^{s-2}}{da^{s-2}}right)$ to both sides of the previous line. In the $s=4$ case we get:
$$ sum_{ngeq 1}frac{H_n}{n^4}=frac{1}{6}lim_{ato 0^+}left[3,psi'(a),psi''(a)+H_{a-1},psi'''(a)-tfrac{1}{2}psi^{IV}(a)right]=color{blue}{3,zeta(5)-zeta(2),zeta(3)}. $$
answered Nov 25 '17 at 16:50
Jack D'AurizioJack D'Aurizio
289k33281660
289k33281660
$begingroup$
Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
$endgroup$
– Frpzzd
Dec 22 '17 at 18:03
add a comment |
$begingroup$
Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
$endgroup$
– Frpzzd
Dec 22 '17 at 18:03
$begingroup$
Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
$endgroup$
– Frpzzd
Dec 22 '17 at 18:03
$begingroup$
Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$frac{H_{a-1}^2-H_{b-1}^2-psi'(a)-psi'(b)}{2a-2b}$$?
$endgroup$
– Frpzzd
Dec 22 '17 at 18:03
add a comment |
$begingroup$
I wonder if there is not a problem somewhere.
I agree that $$sum_{k=1}^infty frac{H_k}{k^4}=-zeta(2)zeta(3)+text{something}$$ Setting $$text{something}=int_0^1 frac{text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically
$$sum_{k=1}^infty frac{H_k}{k^4}=1.13348$$ making $$text{something}=3.11078$$ which is identified as $3zeta(5)$.
It could be good that you describe the intermediate steps.
$endgroup$
$begingroup$
You are correct, and Euler already knew that. =D
$endgroup$
– Professor Vector
Nov 25 '17 at 13:16
$begingroup$
The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
$endgroup$
– Professor Vector
Nov 25 '17 at 20:05
add a comment |
$begingroup$
I wonder if there is not a problem somewhere.
I agree that $$sum_{k=1}^infty frac{H_k}{k^4}=-zeta(2)zeta(3)+text{something}$$ Setting $$text{something}=int_0^1 frac{text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically
$$sum_{k=1}^infty frac{H_k}{k^4}=1.13348$$ making $$text{something}=3.11078$$ which is identified as $3zeta(5)$.
It could be good that you describe the intermediate steps.
$endgroup$
$begingroup$
You are correct, and Euler already knew that. =D
$endgroup$
– Professor Vector
Nov 25 '17 at 13:16
$begingroup$
The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
$endgroup$
– Professor Vector
Nov 25 '17 at 20:05
add a comment |
$begingroup$
I wonder if there is not a problem somewhere.
I agree that $$sum_{k=1}^infty frac{H_k}{k^4}=-zeta(2)zeta(3)+text{something}$$ Setting $$text{something}=int_0^1 frac{text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically
$$sum_{k=1}^infty frac{H_k}{k^4}=1.13348$$ making $$text{something}=3.11078$$ which is identified as $3zeta(5)$.
It could be good that you describe the intermediate steps.
$endgroup$
I wonder if there is not a problem somewhere.
I agree that $$sum_{k=1}^infty frac{H_k}{k^4}=-zeta(2)zeta(3)+text{something}$$ Setting $$text{something}=int_0^1 frac{text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically
$$sum_{k=1}^infty frac{H_k}{k^4}=1.13348$$ making $$text{something}=3.11078$$ which is identified as $3zeta(5)$.
It could be good that you describe the intermediate steps.
answered Nov 25 '17 at 3:36
Claude LeiboviciClaude Leibovici
120k1157132
120k1157132
$begingroup$
You are correct, and Euler already knew that. =D
$endgroup$
– Professor Vector
Nov 25 '17 at 13:16
$begingroup$
The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
$endgroup$
– Professor Vector
Nov 25 '17 at 20:05
add a comment |
$begingroup$
You are correct, and Euler already knew that. =D
$endgroup$
– Professor Vector
Nov 25 '17 at 13:16
$begingroup$
The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
$endgroup$
– Professor Vector
Nov 25 '17 at 20:05
$begingroup$
You are correct, and Euler already knew that. =D
$endgroup$
– Professor Vector
Nov 25 '17 at 13:16
$begingroup$
You are correct, and Euler already knew that. =D
$endgroup$
– Professor Vector
Nov 25 '17 at 13:16
$begingroup$
The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
$endgroup$
– Professor Vector
Nov 25 '17 at 20:05
$begingroup$
The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results.
$endgroup$
– Professor Vector
Nov 25 '17 at 20:05
add a comment |
$begingroup$
Since $H_k=H_{k-1}+frac1k$, we have $$sum^infty_{k=1}frac{H_k}{k^4}=sum^infty_{k=1}frac{H_{k-1}}{k^4}+sum^infty_{k=1}frac1{k^5}
=sum^infty_{k=1}frac{H_{k-1}}{k^4}+zeta(5).tag1$$
If we define $$sigma_h(s,t)=sum^infty_{n=1}frac1{n^t}sum^{n-1}_{k=1}frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously
$$2sigma_h(1,m)=m,zeta(m+1)-sum^{m-2}_{k=1}zeta(m-k),zeta(k+1)$$ for $mge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $sigma_h(1,4)$, and the above formula easily gives $sigma_h(1,4)=2,zeta(5)-zeta(2),zeta(3)$, and (1) gives the final result
$$sum^infty_{k=1}frac{H_k}{k^4}=3,zeta(5)-zeta(2),zeta(3).$$
$endgroup$
add a comment |
$begingroup$
Since $H_k=H_{k-1}+frac1k$, we have $$sum^infty_{k=1}frac{H_k}{k^4}=sum^infty_{k=1}frac{H_{k-1}}{k^4}+sum^infty_{k=1}frac1{k^5}
=sum^infty_{k=1}frac{H_{k-1}}{k^4}+zeta(5).tag1$$
If we define $$sigma_h(s,t)=sum^infty_{n=1}frac1{n^t}sum^{n-1}_{k=1}frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously
$$2sigma_h(1,m)=m,zeta(m+1)-sum^{m-2}_{k=1}zeta(m-k),zeta(k+1)$$ for $mge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $sigma_h(1,4)$, and the above formula easily gives $sigma_h(1,4)=2,zeta(5)-zeta(2),zeta(3)$, and (1) gives the final result
$$sum^infty_{k=1}frac{H_k}{k^4}=3,zeta(5)-zeta(2),zeta(3).$$
$endgroup$
add a comment |
$begingroup$
Since $H_k=H_{k-1}+frac1k$, we have $$sum^infty_{k=1}frac{H_k}{k^4}=sum^infty_{k=1}frac{H_{k-1}}{k^4}+sum^infty_{k=1}frac1{k^5}
=sum^infty_{k=1}frac{H_{k-1}}{k^4}+zeta(5).tag1$$
If we define $$sigma_h(s,t)=sum^infty_{n=1}frac1{n^t}sum^{n-1}_{k=1}frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously
$$2sigma_h(1,m)=m,zeta(m+1)-sum^{m-2}_{k=1}zeta(m-k),zeta(k+1)$$ for $mge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $sigma_h(1,4)$, and the above formula easily gives $sigma_h(1,4)=2,zeta(5)-zeta(2),zeta(3)$, and (1) gives the final result
$$sum^infty_{k=1}frac{H_k}{k^4}=3,zeta(5)-zeta(2),zeta(3).$$
$endgroup$
Since $H_k=H_{k-1}+frac1k$, we have $$sum^infty_{k=1}frac{H_k}{k^4}=sum^infty_{k=1}frac{H_{k-1}}{k^4}+sum^infty_{k=1}frac1{k^5}
=sum^infty_{k=1}frac{H_{k-1}}{k^4}+zeta(5).tag1$$
If we define $$sigma_h(s,t)=sum^infty_{n=1}frac1{n^t}sum^{n-1}_{k=1}frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously
$$2sigma_h(1,m)=m,zeta(m+1)-sum^{m-2}_{k=1}zeta(m-k),zeta(k+1)$$ for $mge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $sigma_h(1,4)$, and the above formula easily gives $sigma_h(1,4)=2,zeta(5)-zeta(2),zeta(3)$, and (1) gives the final result
$$sum^infty_{k=1}frac{H_k}{k^4}=3,zeta(5)-zeta(2),zeta(3).$$
answered Nov 25 '17 at 13:14
Professor VectorProfessor Vector
11.1k11333
11.1k11333
add a comment |
add a comment |
$begingroup$
To find your Euler sum I will make use of the following result which can be found here
$$sum_{k=1}^{infty} dfrac{H_k^{(p)}}{k^q}=frac{(-1)^{q+1}}{Gamma(q)} int_{0}^{1} frac{ln^{q - 1} (u) text{Li}_{p}(u)}{u (1 - u)}{du}.$$
Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.
So when $p = 1$ and $q = 4$ we have
$$sum^infty_{k = 1} frac{H_k}{k^4} = -frac{1}{Gamma (4)} int^1_0 frac{ln^3 (u) , text{Li}_1 (u)}{u (1 - u)} , du = frac{1}{6} int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du,$$
where $text{Li}_1 (u) = - ln (1 - u)$ has been used.
The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $text{B}(x,y)$ as follows. As
$$text{B}(x,y) = int^1_0 t^{x - 1} (1 - t)^{y - 1} , dt,$$
we have
$$lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du.$$
Thus
begin{align*}
sum^infty_{k = 1} frac{H_k}{k^4} &= frac{1}{6} lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = frac{1}{6} left [-frac{3}{4} psi^{(4)} (1) + 3 psi^{(2)}(1) psi^{(1)}(1) right ].
end{align*}
Here $psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are:
$$psi^{(4)}(1) = - 24 zeta(5), ,, psi^{(2)}(1) = -2 zeta (3), ,,psi^{(1)}(1) = zeta (2),$$
and yields
$$sum^infty_{k = 1} frac{H_k}{k^4} = 3 zeta (5) - zeta (2) zeta (3).$$
$endgroup$
add a comment |
$begingroup$
To find your Euler sum I will make use of the following result which can be found here
$$sum_{k=1}^{infty} dfrac{H_k^{(p)}}{k^q}=frac{(-1)^{q+1}}{Gamma(q)} int_{0}^{1} frac{ln^{q - 1} (u) text{Li}_{p}(u)}{u (1 - u)}{du}.$$
Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.
So when $p = 1$ and $q = 4$ we have
$$sum^infty_{k = 1} frac{H_k}{k^4} = -frac{1}{Gamma (4)} int^1_0 frac{ln^3 (u) , text{Li}_1 (u)}{u (1 - u)} , du = frac{1}{6} int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du,$$
where $text{Li}_1 (u) = - ln (1 - u)$ has been used.
The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $text{B}(x,y)$ as follows. As
$$text{B}(x,y) = int^1_0 t^{x - 1} (1 - t)^{y - 1} , dt,$$
we have
$$lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du.$$
Thus
begin{align*}
sum^infty_{k = 1} frac{H_k}{k^4} &= frac{1}{6} lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = frac{1}{6} left [-frac{3}{4} psi^{(4)} (1) + 3 psi^{(2)}(1) psi^{(1)}(1) right ].
end{align*}
Here $psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are:
$$psi^{(4)}(1) = - 24 zeta(5), ,, psi^{(2)}(1) = -2 zeta (3), ,,psi^{(1)}(1) = zeta (2),$$
and yields
$$sum^infty_{k = 1} frac{H_k}{k^4} = 3 zeta (5) - zeta (2) zeta (3).$$
$endgroup$
add a comment |
$begingroup$
To find your Euler sum I will make use of the following result which can be found here
$$sum_{k=1}^{infty} dfrac{H_k^{(p)}}{k^q}=frac{(-1)^{q+1}}{Gamma(q)} int_{0}^{1} frac{ln^{q - 1} (u) text{Li}_{p}(u)}{u (1 - u)}{du}.$$
Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.
So when $p = 1$ and $q = 4$ we have
$$sum^infty_{k = 1} frac{H_k}{k^4} = -frac{1}{Gamma (4)} int^1_0 frac{ln^3 (u) , text{Li}_1 (u)}{u (1 - u)} , du = frac{1}{6} int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du,$$
where $text{Li}_1 (u) = - ln (1 - u)$ has been used.
The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $text{B}(x,y)$ as follows. As
$$text{B}(x,y) = int^1_0 t^{x - 1} (1 - t)^{y - 1} , dt,$$
we have
$$lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du.$$
Thus
begin{align*}
sum^infty_{k = 1} frac{H_k}{k^4} &= frac{1}{6} lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = frac{1}{6} left [-frac{3}{4} psi^{(4)} (1) + 3 psi^{(2)}(1) psi^{(1)}(1) right ].
end{align*}
Here $psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are:
$$psi^{(4)}(1) = - 24 zeta(5), ,, psi^{(2)}(1) = -2 zeta (3), ,,psi^{(1)}(1) = zeta (2),$$
and yields
$$sum^infty_{k = 1} frac{H_k}{k^4} = 3 zeta (5) - zeta (2) zeta (3).$$
$endgroup$
To find your Euler sum I will make use of the following result which can be found here
$$sum_{k=1}^{infty} dfrac{H_k^{(p)}}{k^q}=frac{(-1)^{q+1}}{Gamma(q)} int_{0}^{1} frac{ln^{q - 1} (u) text{Li}_{p}(u)}{u (1 - u)}{du}.$$
Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.
So when $p = 1$ and $q = 4$ we have
$$sum^infty_{k = 1} frac{H_k}{k^4} = -frac{1}{Gamma (4)} int^1_0 frac{ln^3 (u) , text{Li}_1 (u)}{u (1 - u)} , du = frac{1}{6} int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du,$$
where $text{Li}_1 (u) = - ln (1 - u)$ has been used.
The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $text{B}(x,y)$ as follows. As
$$text{B}(x,y) = int^1_0 t^{x - 1} (1 - t)^{y - 1} , dt,$$
we have
$$lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = int^1_0 frac{ln^3 (u) ln (1 - u)}{u (1 - u)} , du.$$
Thus
begin{align*}
sum^infty_{k = 1} frac{H_k}{k^4} &= frac{1}{6} lim_{x to 0^+} lim_{y to 0^+} partial^3_x partial_y text{B}(x,y) = frac{1}{6} left [-frac{3}{4} psi^{(4)} (1) + 3 psi^{(2)}(1) psi^{(1)}(1) right ].
end{align*}
Here $psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are:
$$psi^{(4)}(1) = - 24 zeta(5), ,, psi^{(2)}(1) = -2 zeta (3), ,,psi^{(1)}(1) = zeta (2),$$
and yields
$$sum^infty_{k = 1} frac{H_k}{k^4} = 3 zeta (5) - zeta (2) zeta (3).$$
answered Dec 6 '17 at 8:39
omegadotomegadot
5,2022727
5,2022727
add a comment |
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
sum_{k = 1}^{infty}{H_{k} over k^{4}} & =
sum_{k = 1}^{infty}H_{k}
overbrace{bracks{-,{1 over 6}int_{0}^{1}ln^{3}pars{x},x^{k - 1},dd x}}
^{ds{1 over k^{4}}}
\[5mm] & =
-,{1 over 6}int_{0}^{1}ln^{3}pars{x}
overbrace{sum_{k = 1}^{infty}H_{k},x^{k}}
^{ds{-,{lnpars{1 - x} over 1 - x}}} ,{dd x over x}
\[5mm] & =
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over xpars{1 - x}}
,dd x
\[5mm] & =
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x +
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over 1 - x},dd x
\[5mm] & =
{1 over 6}
underbrace{int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x}
_{ds{mc{I}_{1}}} +
{1 over 6}
underbrace{int_{0}^{1}{ln^{3}pars{1 - x}lnpars{x} over x},dd x}
_{ds{mc{I}_{2}}}
\[5mm] & = {mc{I}_{1} + mc{I}_{2} over 6}label{1}tag{1}
end{align}
$ds{Large mc{I}_{1} = ?}$.
begin{align}
mc{I}_{1} & =
-int_{0}^{1}mrm{Li}_{2}'pars{x}ln^{3}pars{x},dd x =
3int_{0}^{1}mrm{Li}_{3}'pars{x}ln^{2}pars{x},dd x =
-6int_{0}^{1}mrm{Li}_{4}'pars{x}lnpars{x},dd x
\[5mm] & =
6int_{0}^{1}mrm{Li}_{5}'pars{x},dd x =
6,mrm{Li}_{5}pars{1} implies
bbx{large mc{I}_{1} = 6,zetapars{5}}label{2}tag{2}
end{align}
$ds{Large mc{I}_{2} = ?}$.
begin{align}
mc{I}_{2} & =
left.partiald[3]{}{mu}partiald{}{nu}
int_{0}^{1}{bracks{pars{1 - x}^{mu} - 1}x^{nu} over x},dd x
,rightvert_{ mu = 0,, nu = 0}
\[5mm] & =
left.partiald[3]{}{mu}partiald{}{nu}
int_{0}^{1}bracks{pars{1 - x}^{mu}x^{nu - 1} - x^{nu - 1}}dd x
,rightvert_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
bracks{{Gammapars{mu + 1}Gammapars{nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
braces{{Gammapars{mu + 1}bracks{Gammapars{nu + 1}/nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
bracks{{Gammapars{mu + 1}Gammapars{nu + 1} -
Gammapars{mu + nu + 1} over
nu,Gammapars{mu + nu + 1}}}_{ mu = 0,, nu = 0}
end{align}
begin{equation}
mbox{This limit is a 'cumbersome task'. Its value is}
bbx{largemc{I}_{2} = 12,zetapars{5} - pi^{2}zetapars{3}}
label{3}tag{3}
end{equation}
eqref{1}, eqref{2} and eqref{3} lead to
$$
bbx{sum_{k = 1}^{infty}{H_{k} over k^{4}} =
3,zetapars{5} - {1 over 6},pi^{2},zetapars{3}}
$$
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
sum_{k = 1}^{infty}{H_{k} over k^{4}} & =
sum_{k = 1}^{infty}H_{k}
overbrace{bracks{-,{1 over 6}int_{0}^{1}ln^{3}pars{x},x^{k - 1},dd x}}
^{ds{1 over k^{4}}}
\[5mm] & =
-,{1 over 6}int_{0}^{1}ln^{3}pars{x}
overbrace{sum_{k = 1}^{infty}H_{k},x^{k}}
^{ds{-,{lnpars{1 - x} over 1 - x}}} ,{dd x over x}
\[5mm] & =
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over xpars{1 - x}}
,dd x
\[5mm] & =
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x +
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over 1 - x},dd x
\[5mm] & =
{1 over 6}
underbrace{int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x}
_{ds{mc{I}_{1}}} +
{1 over 6}
underbrace{int_{0}^{1}{ln^{3}pars{1 - x}lnpars{x} over x},dd x}
_{ds{mc{I}_{2}}}
\[5mm] & = {mc{I}_{1} + mc{I}_{2} over 6}label{1}tag{1}
end{align}
$ds{Large mc{I}_{1} = ?}$.
begin{align}
mc{I}_{1} & =
-int_{0}^{1}mrm{Li}_{2}'pars{x}ln^{3}pars{x},dd x =
3int_{0}^{1}mrm{Li}_{3}'pars{x}ln^{2}pars{x},dd x =
-6int_{0}^{1}mrm{Li}_{4}'pars{x}lnpars{x},dd x
\[5mm] & =
6int_{0}^{1}mrm{Li}_{5}'pars{x},dd x =
6,mrm{Li}_{5}pars{1} implies
bbx{large mc{I}_{1} = 6,zetapars{5}}label{2}tag{2}
end{align}
$ds{Large mc{I}_{2} = ?}$.
begin{align}
mc{I}_{2} & =
left.partiald[3]{}{mu}partiald{}{nu}
int_{0}^{1}{bracks{pars{1 - x}^{mu} - 1}x^{nu} over x},dd x
,rightvert_{ mu = 0,, nu = 0}
\[5mm] & =
left.partiald[3]{}{mu}partiald{}{nu}
int_{0}^{1}bracks{pars{1 - x}^{mu}x^{nu - 1} - x^{nu - 1}}dd x
,rightvert_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
bracks{{Gammapars{mu + 1}Gammapars{nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
braces{{Gammapars{mu + 1}bracks{Gammapars{nu + 1}/nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
bracks{{Gammapars{mu + 1}Gammapars{nu + 1} -
Gammapars{mu + nu + 1} over
nu,Gammapars{mu + nu + 1}}}_{ mu = 0,, nu = 0}
end{align}
begin{equation}
mbox{This limit is a 'cumbersome task'. Its value is}
bbx{largemc{I}_{2} = 12,zetapars{5} - pi^{2}zetapars{3}}
label{3}tag{3}
end{equation}
eqref{1}, eqref{2} and eqref{3} lead to
$$
bbx{sum_{k = 1}^{infty}{H_{k} over k^{4}} =
3,zetapars{5} - {1 over 6},pi^{2},zetapars{3}}
$$
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
sum_{k = 1}^{infty}{H_{k} over k^{4}} & =
sum_{k = 1}^{infty}H_{k}
overbrace{bracks{-,{1 over 6}int_{0}^{1}ln^{3}pars{x},x^{k - 1},dd x}}
^{ds{1 over k^{4}}}
\[5mm] & =
-,{1 over 6}int_{0}^{1}ln^{3}pars{x}
overbrace{sum_{k = 1}^{infty}H_{k},x^{k}}
^{ds{-,{lnpars{1 - x} over 1 - x}}} ,{dd x over x}
\[5mm] & =
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over xpars{1 - x}}
,dd x
\[5mm] & =
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x +
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over 1 - x},dd x
\[5mm] & =
{1 over 6}
underbrace{int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x}
_{ds{mc{I}_{1}}} +
{1 over 6}
underbrace{int_{0}^{1}{ln^{3}pars{1 - x}lnpars{x} over x},dd x}
_{ds{mc{I}_{2}}}
\[5mm] & = {mc{I}_{1} + mc{I}_{2} over 6}label{1}tag{1}
end{align}
$ds{Large mc{I}_{1} = ?}$.
begin{align}
mc{I}_{1} & =
-int_{0}^{1}mrm{Li}_{2}'pars{x}ln^{3}pars{x},dd x =
3int_{0}^{1}mrm{Li}_{3}'pars{x}ln^{2}pars{x},dd x =
-6int_{0}^{1}mrm{Li}_{4}'pars{x}lnpars{x},dd x
\[5mm] & =
6int_{0}^{1}mrm{Li}_{5}'pars{x},dd x =
6,mrm{Li}_{5}pars{1} implies
bbx{large mc{I}_{1} = 6,zetapars{5}}label{2}tag{2}
end{align}
$ds{Large mc{I}_{2} = ?}$.
begin{align}
mc{I}_{2} & =
left.partiald[3]{}{mu}partiald{}{nu}
int_{0}^{1}{bracks{pars{1 - x}^{mu} - 1}x^{nu} over x},dd x
,rightvert_{ mu = 0,, nu = 0}
\[5mm] & =
left.partiald[3]{}{mu}partiald{}{nu}
int_{0}^{1}bracks{pars{1 - x}^{mu}x^{nu - 1} - x^{nu - 1}}dd x
,rightvert_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
bracks{{Gammapars{mu + 1}Gammapars{nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
braces{{Gammapars{mu + 1}bracks{Gammapars{nu + 1}/nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
bracks{{Gammapars{mu + 1}Gammapars{nu + 1} -
Gammapars{mu + nu + 1} over
nu,Gammapars{mu + nu + 1}}}_{ mu = 0,, nu = 0}
end{align}
begin{equation}
mbox{This limit is a 'cumbersome task'. Its value is}
bbx{largemc{I}_{2} = 12,zetapars{5} - pi^{2}zetapars{3}}
label{3}tag{3}
end{equation}
eqref{1}, eqref{2} and eqref{3} lead to
$$
bbx{sum_{k = 1}^{infty}{H_{k} over k^{4}} =
3,zetapars{5} - {1 over 6},pi^{2},zetapars{3}}
$$
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
sum_{k = 1}^{infty}{H_{k} over k^{4}} & =
sum_{k = 1}^{infty}H_{k}
overbrace{bracks{-,{1 over 6}int_{0}^{1}ln^{3}pars{x},x^{k - 1},dd x}}
^{ds{1 over k^{4}}}
\[5mm] & =
-,{1 over 6}int_{0}^{1}ln^{3}pars{x}
overbrace{sum_{k = 1}^{infty}H_{k},x^{k}}
^{ds{-,{lnpars{1 - x} over 1 - x}}} ,{dd x over x}
\[5mm] & =
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over xpars{1 - x}}
,dd x
\[5mm] & =
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x +
{1 over 6}int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over 1 - x},dd x
\[5mm] & =
{1 over 6}
underbrace{int_{0}^{1}{ln^{3}pars{x}lnpars{1 - x} over x},dd x}
_{ds{mc{I}_{1}}} +
{1 over 6}
underbrace{int_{0}^{1}{ln^{3}pars{1 - x}lnpars{x} over x},dd x}
_{ds{mc{I}_{2}}}
\[5mm] & = {mc{I}_{1} + mc{I}_{2} over 6}label{1}tag{1}
end{align}
$ds{Large mc{I}_{1} = ?}$.
begin{align}
mc{I}_{1} & =
-int_{0}^{1}mrm{Li}_{2}'pars{x}ln^{3}pars{x},dd x =
3int_{0}^{1}mrm{Li}_{3}'pars{x}ln^{2}pars{x},dd x =
-6int_{0}^{1}mrm{Li}_{4}'pars{x}lnpars{x},dd x
\[5mm] & =
6int_{0}^{1}mrm{Li}_{5}'pars{x},dd x =
6,mrm{Li}_{5}pars{1} implies
bbx{large mc{I}_{1} = 6,zetapars{5}}label{2}tag{2}
end{align}
$ds{Large mc{I}_{2} = ?}$.
begin{align}
mc{I}_{2} & =
left.partiald[3]{}{mu}partiald{}{nu}
int_{0}^{1}{bracks{pars{1 - x}^{mu} - 1}x^{nu} over x},dd x
,rightvert_{ mu = 0,, nu = 0}
\[5mm] & =
left.partiald[3]{}{mu}partiald{}{nu}
int_{0}^{1}bracks{pars{1 - x}^{mu}x^{nu - 1} - x^{nu - 1}}dd x
,rightvert_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
bracks{{Gammapars{mu + 1}Gammapars{nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
braces{{Gammapars{mu + 1}bracks{Gammapars{nu + 1}/nu} over Gammapars{mu + nu + 1}} - {1 over nu}}_{ mu = 0,, nu = 0}
\[5mm] & =
partiald[3]{}{mu}partiald{}{nu}
bracks{{Gammapars{mu + 1}Gammapars{nu + 1} -
Gammapars{mu + nu + 1} over
nu,Gammapars{mu + nu + 1}}}_{ mu = 0,, nu = 0}
end{align}
begin{equation}
mbox{This limit is a 'cumbersome task'. Its value is}
bbx{largemc{I}_{2} = 12,zetapars{5} - pi^{2}zetapars{3}}
label{3}tag{3}
end{equation}
eqref{1}, eqref{2} and eqref{3} lead to
$$
bbx{sum_{k = 1}^{infty}{H_{k} over k^{4}} =
3,zetapars{5} - {1 over 6},pi^{2},zetapars{3}}
$$
edited Jan 11 at 19:22
answered Dec 14 '17 at 22:33
Felix MarinFelix Marin
67.5k7107141
67.5k7107141
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2535896%2fdefinite-integral-involving-polylogarithm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Using Parseval it reduces to $int_{1/2-iinfty}^{1/2+iinfty} |Gamma(s)zeta(s+2)|^2ds$
$endgroup$
– reuns
Nov 24 '17 at 23:56
$begingroup$
@reuns Sorry, but I'm not very experienced in complex analysis.
$endgroup$
– Frpzzd
Nov 25 '17 at 0:04
1
$begingroup$
There's a sign error. The correct formula is $$sum_{k=1}^infty frac{H_k}{k^4}=zeta(2)zeta(3)-int_0^1 frac{text{Li}_2^2(x)}{x}dx.$$
$endgroup$
– Professor Vector
Nov 25 '17 at 14:59