How to get the identity $frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}$ when $a < b$?












-1












$begingroup$


How does one arrive at the equality $frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)(b - a)$ when $a < b$? I came across this identity in a competitive programming problem, but I couldn't find out any way to get it. For example,



$$frac{1}{2 cdot 3} = left(frac{1}{2} - frac{1}{3}right)frac{1}{(3 - 2)},$$



and



$$frac{1}{3 cdot 5} = left(frac{1}{3} - frac{1}{5}right)frac{1}{(5 - 3)}.$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
    $endgroup$
    – Donald Splutterwit
    Jan 13 at 20:46










  • $begingroup$
    Yes, I have fixed it.
    $endgroup$
    – joseph
    Jan 13 at 20:47










  • $begingroup$
    Common denominator of the difference of reciprocals.
    $endgroup$
    – Hans Engler
    Jan 13 at 20:48






  • 2




    $begingroup$
    This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
    $endgroup$
    – Dietrich Burde
    Jan 13 at 20:48










  • $begingroup$
    They just compute both sides and see they are the same.
    $endgroup$
    – Saucy O'Path
    Jan 13 at 20:49
















-1












$begingroup$


How does one arrive at the equality $frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)(b - a)$ when $a < b$? I came across this identity in a competitive programming problem, but I couldn't find out any way to get it. For example,



$$frac{1}{2 cdot 3} = left(frac{1}{2} - frac{1}{3}right)frac{1}{(3 - 2)},$$



and



$$frac{1}{3 cdot 5} = left(frac{1}{3} - frac{1}{5}right)frac{1}{(5 - 3)}.$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
    $endgroup$
    – Donald Splutterwit
    Jan 13 at 20:46










  • $begingroup$
    Yes, I have fixed it.
    $endgroup$
    – joseph
    Jan 13 at 20:47










  • $begingroup$
    Common denominator of the difference of reciprocals.
    $endgroup$
    – Hans Engler
    Jan 13 at 20:48






  • 2




    $begingroup$
    This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
    $endgroup$
    – Dietrich Burde
    Jan 13 at 20:48










  • $begingroup$
    They just compute both sides and see they are the same.
    $endgroup$
    – Saucy O'Path
    Jan 13 at 20:49














-1












-1








-1





$begingroup$


How does one arrive at the equality $frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)(b - a)$ when $a < b$? I came across this identity in a competitive programming problem, but I couldn't find out any way to get it. For example,



$$frac{1}{2 cdot 3} = left(frac{1}{2} - frac{1}{3}right)frac{1}{(3 - 2)},$$



and



$$frac{1}{3 cdot 5} = left(frac{1}{3} - frac{1}{5}right)frac{1}{(5 - 3)}.$$










share|cite|improve this question











$endgroup$




How does one arrive at the equality $frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)(b - a)$ when $a < b$? I came across this identity in a competitive programming problem, but I couldn't find out any way to get it. For example,



$$frac{1}{2 cdot 3} = left(frac{1}{2} - frac{1}{3}right)frac{1}{(3 - 2)},$$



and



$$frac{1}{3 cdot 5} = left(frac{1}{3} - frac{1}{5}right)frac{1}{(5 - 3)}.$$







algebra-precalculus proof-writing






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 20:56









Michael Rozenberg

100k1591193




100k1591193










asked Jan 13 at 20:43









josephjoseph

500111




500111








  • 1




    $begingroup$
    They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
    $endgroup$
    – Donald Splutterwit
    Jan 13 at 20:46










  • $begingroup$
    Yes, I have fixed it.
    $endgroup$
    – joseph
    Jan 13 at 20:47










  • $begingroup$
    Common denominator of the difference of reciprocals.
    $endgroup$
    – Hans Engler
    Jan 13 at 20:48






  • 2




    $begingroup$
    This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
    $endgroup$
    – Dietrich Burde
    Jan 13 at 20:48










  • $begingroup$
    They just compute both sides and see they are the same.
    $endgroup$
    – Saucy O'Path
    Jan 13 at 20:49














  • 1




    $begingroup$
    They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
    $endgroup$
    – Donald Splutterwit
    Jan 13 at 20:46










  • $begingroup$
    Yes, I have fixed it.
    $endgroup$
    – joseph
    Jan 13 at 20:47










  • $begingroup$
    Common denominator of the difference of reciprocals.
    $endgroup$
    – Hans Engler
    Jan 13 at 20:48






  • 2




    $begingroup$
    This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
    $endgroup$
    – Dietrich Burde
    Jan 13 at 20:48










  • $begingroup$
    They just compute both sides and see they are the same.
    $endgroup$
    – Saucy O'Path
    Jan 13 at 20:49








1




1




$begingroup$
They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
$endgroup$
– Donald Splutterwit
Jan 13 at 20:46




$begingroup$
They probably mean begin{eqnarray*} frac{1}{ab} = left(frac{1}{a} - frac{1}{b}right)frac{1}{(b - a)}. end{eqnarray*}
$endgroup$
– Donald Splutterwit
Jan 13 at 20:46












$begingroup$
Yes, I have fixed it.
$endgroup$
– joseph
Jan 13 at 20:47




$begingroup$
Yes, I have fixed it.
$endgroup$
– joseph
Jan 13 at 20:47












$begingroup$
Common denominator of the difference of reciprocals.
$endgroup$
– Hans Engler
Jan 13 at 20:48




$begingroup$
Common denominator of the difference of reciprocals.
$endgroup$
– Hans Engler
Jan 13 at 20:48




2




2




$begingroup$
This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
$endgroup$
– Dietrich Burde
Jan 13 at 20:48




$begingroup$
This follows trivially from $frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$.
$endgroup$
– Dietrich Burde
Jan 13 at 20:48












$begingroup$
They just compute both sides and see they are the same.
$endgroup$
– Saucy O'Path
Jan 13 at 20:49




$begingroup$
They just compute both sides and see they are the same.
$endgroup$
– Saucy O'Path
Jan 13 at 20:49










3 Answers
3






active

oldest

votes


















2












$begingroup$

For $a,bne 0$ and $ane b$, multiply both sides in $ab(b-a)$ and double-sidedly conclude what you want.






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    Because $$frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$$ and since $b-aneq0$, we are done.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      $frac{1}{ab} = frac{b - a}{ab(b - a)} = big(frac{b-a}{ab})/(b-a) = big(frac{1}{a} - frac{1}{b}big)/(b - a)$



      if $b-a neq0$






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072489%2fhow-to-get-the-identity-frac1ab-left-frac1a-frac1b-right-f%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        For $a,bne 0$ and $ane b$, multiply both sides in $ab(b-a)$ and double-sidedly conclude what you want.






        share|cite|improve this answer









        $endgroup$


















          2












          $begingroup$

          For $a,bne 0$ and $ane b$, multiply both sides in $ab(b-a)$ and double-sidedly conclude what you want.






          share|cite|improve this answer









          $endgroup$
















            2












            2








            2





            $begingroup$

            For $a,bne 0$ and $ane b$, multiply both sides in $ab(b-a)$ and double-sidedly conclude what you want.






            share|cite|improve this answer









            $endgroup$



            For $a,bne 0$ and $ane b$, multiply both sides in $ab(b-a)$ and double-sidedly conclude what you want.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 13 at 20:54









            Mostafa AyazMostafa Ayaz

            15.3k3939




            15.3k3939























                3












                $begingroup$

                Because $$frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$$ and since $b-aneq0$, we are done.






                share|cite|improve this answer









                $endgroup$


















                  3












                  $begingroup$

                  Because $$frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$$ and since $b-aneq0$, we are done.






                  share|cite|improve this answer









                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    Because $$frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$$ and since $b-aneq0$, we are done.






                    share|cite|improve this answer









                    $endgroup$



                    Because $$frac{1}{a}-frac{1}{b}=frac{b-a}{ab}$$ and since $b-aneq0$, we are done.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 13 at 20:50









                    Michael RozenbergMichael Rozenberg

                    100k1591193




                    100k1591193























                        0












                        $begingroup$

                        $frac{1}{ab} = frac{b - a}{ab(b - a)} = big(frac{b-a}{ab})/(b-a) = big(frac{1}{a} - frac{1}{b}big)/(b - a)$



                        if $b-a neq0$






                        share|cite|improve this answer











                        $endgroup$


















                          0












                          $begingroup$

                          $frac{1}{ab} = frac{b - a}{ab(b - a)} = big(frac{b-a}{ab})/(b-a) = big(frac{1}{a} - frac{1}{b}big)/(b - a)$



                          if $b-a neq0$






                          share|cite|improve this answer











                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            $frac{1}{ab} = frac{b - a}{ab(b - a)} = big(frac{b-a}{ab})/(b-a) = big(frac{1}{a} - frac{1}{b}big)/(b - a)$



                            if $b-a neq0$






                            share|cite|improve this answer











                            $endgroup$



                            $frac{1}{ab} = frac{b - a}{ab(b - a)} = big(frac{b-a}{ab})/(b-a) = big(frac{1}{a} - frac{1}{b}big)/(b - a)$



                            if $b-a neq0$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jan 13 at 21:03









                            J. W. Tanner

                            830112




                            830112










                            answered Jan 13 at 20:52









                            kelalakakelalaka

                            3301212




                            3301212






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072489%2fhow-to-get-the-identity-frac1ab-left-frac1a-frac1b-right-f%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Mario Kart Wii

                                The Binding of Isaac: Rebirth/Afterbirth

                                What does “Dominus providebit” mean?