Finding the closed form of a generating function
$begingroup$
Given that $k$ is a positive integer and $f(x)$ is the generating function of the sequence $(b_0,b_1,b_2,...)$ where $b_n = {n choose k};, forall ;n$, show that: $$f(x)=frac{x^k}{(1-x)^{k+1}}$$
I tried writing a few terms of $f(x)$:$$f(x)=x^k+{k+1 choose k}x^{k+1}+{k+2 choose k}x^{k+2}+...$$$$;;;;;;;;;=x^kleft(1+{k+1 choose k}x^1+{k+2 choose k}x^2+...right)$$$$=x^kcdot h(x);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; $$
Where $h(x)$ is defined as the expression in parenthesis, then I tried some manipulation, for example I computed $h(x)-xh(x)$, since: ${k+n+1 choose k}-{k+n choose k}={k+n choose k-1}$ we have:
$h(x)-xh(x)=1+{k choose k-1}x+{k+1 choose k-1}x^2+...$
But I'm stuck, not sure how I should procede
generating-functions
$endgroup$
add a comment |
$begingroup$
Given that $k$ is a positive integer and $f(x)$ is the generating function of the sequence $(b_0,b_1,b_2,...)$ where $b_n = {n choose k};, forall ;n$, show that: $$f(x)=frac{x^k}{(1-x)^{k+1}}$$
I tried writing a few terms of $f(x)$:$$f(x)=x^k+{k+1 choose k}x^{k+1}+{k+2 choose k}x^{k+2}+...$$$$;;;;;;;;;=x^kleft(1+{k+1 choose k}x^1+{k+2 choose k}x^2+...right)$$$$=x^kcdot h(x);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; $$
Where $h(x)$ is defined as the expression in parenthesis, then I tried some manipulation, for example I computed $h(x)-xh(x)$, since: ${k+n+1 choose k}-{k+n choose k}={k+n choose k-1}$ we have:
$h(x)-xh(x)=1+{k choose k-1}x+{k+1 choose k-1}x^2+...$
But I'm stuck, not sure how I should procede
generating-functions
$endgroup$
add a comment |
$begingroup$
Given that $k$ is a positive integer and $f(x)$ is the generating function of the sequence $(b_0,b_1,b_2,...)$ where $b_n = {n choose k};, forall ;n$, show that: $$f(x)=frac{x^k}{(1-x)^{k+1}}$$
I tried writing a few terms of $f(x)$:$$f(x)=x^k+{k+1 choose k}x^{k+1}+{k+2 choose k}x^{k+2}+...$$$$;;;;;;;;;=x^kleft(1+{k+1 choose k}x^1+{k+2 choose k}x^2+...right)$$$$=x^kcdot h(x);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; $$
Where $h(x)$ is defined as the expression in parenthesis, then I tried some manipulation, for example I computed $h(x)-xh(x)$, since: ${k+n+1 choose k}-{k+n choose k}={k+n choose k-1}$ we have:
$h(x)-xh(x)=1+{k choose k-1}x+{k+1 choose k-1}x^2+...$
But I'm stuck, not sure how I should procede
generating-functions
$endgroup$
Given that $k$ is a positive integer and $f(x)$ is the generating function of the sequence $(b_0,b_1,b_2,...)$ where $b_n = {n choose k};, forall ;n$, show that: $$f(x)=frac{x^k}{(1-x)^{k+1}}$$
I tried writing a few terms of $f(x)$:$$f(x)=x^k+{k+1 choose k}x^{k+1}+{k+2 choose k}x^{k+2}+...$$$$;;;;;;;;;=x^kleft(1+{k+1 choose k}x^1+{k+2 choose k}x^2+...right)$$$$=x^kcdot h(x);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; $$
Where $h(x)$ is defined as the expression in parenthesis, then I tried some manipulation, for example I computed $h(x)-xh(x)$, since: ${k+n+1 choose k}-{k+n choose k}={k+n choose k-1}$ we have:
$h(x)-xh(x)=1+{k choose k-1}x+{k+1 choose k-1}x^2+...$
But I'm stuck, not sure how I should procede
generating-functions
generating-functions
asked Jan 25 at 15:54
Spasoje DurovicSpasoje Durovic
38210
38210
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Here is a variation based upon the coefficient of operator $[x^n]$ which denotes the coefficient of $x^n$ of a series.
We obtain
begin{align*}
color{blue}{b_n=[x^n]f(x)}&=[x^n]frac{x^k}{(1-x)^{k+1}}\
&=[x^{n-k}](1-x)^{-k-1}tag{1}\
&=[x^{n-k}]sum_{j=0}^infty binom{-k-1}{j}(-x)^jtag{2}\
&=[x^{n-k}]sum_{j=0}^infty binom{k+j}{j}x^jtag{3}\
&=binom{n}{n-k}tag{4}\
&,,color{blue}{=binom{n}{k}}tag{5}
end{align*}
and the claim follows.
Comment:
In (1) we apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.
In (2) we apply the binomial series expansion.
In (3) we use the binomial identity $binom{-p}{q}=binom{p+q-1}{q}(-1)^q$.
In (4) we select the coefficient of $x^{n-k}$.
In (5) we use the binomial identity $binom{p}{q}=binom{p}{p-q}$.
$endgroup$
add a comment |
$begingroup$
HINT:
Inductive hypothesis
begin{eqnarray*}
f_k(x)= sum_{n=k}^{infty} binom{n}{k} x^n = frac{x^k}{(1-x)^{k+1}}
end{eqnarray*}
and use
begin{eqnarray*}
binom{n}{k} + binom{n}{k+1}= binom{n+1}{k+1}.
end{eqnarray*}
More detail available on request.
Further Hint :
begin{eqnarray*}
f_{k+1}(x) &=& sum_{n=k+1}^{infty} binom{n}{k+1} x^n = sum_{n=k}^{infty} binom{n+1}{k+1} x^{n+1} \
&=& sum_{n=k}^{infty} binom{n}{k} x^{n+1} + sum_{n=k}^{infty} binom{n}{k+1} x^{n+1} \ cdots
end{eqnarray*}
$endgroup$
$begingroup$
From this I got $f_{k+1}(x)=frac{x^k}{(1-x)^{k+2}}$ so $f_{k+1}(x)=frac{1}{(1-x)}f_k(x)$ I never used induction on generating functions so I'm not sure what I'm supposed to do or if I did this correctly
$endgroup$
– Spasoje Durovic
Jan 25 at 16:39
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087246%2ffinding-the-closed-form-of-a-generating-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here is a variation based upon the coefficient of operator $[x^n]$ which denotes the coefficient of $x^n$ of a series.
We obtain
begin{align*}
color{blue}{b_n=[x^n]f(x)}&=[x^n]frac{x^k}{(1-x)^{k+1}}\
&=[x^{n-k}](1-x)^{-k-1}tag{1}\
&=[x^{n-k}]sum_{j=0}^infty binom{-k-1}{j}(-x)^jtag{2}\
&=[x^{n-k}]sum_{j=0}^infty binom{k+j}{j}x^jtag{3}\
&=binom{n}{n-k}tag{4}\
&,,color{blue}{=binom{n}{k}}tag{5}
end{align*}
and the claim follows.
Comment:
In (1) we apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.
In (2) we apply the binomial series expansion.
In (3) we use the binomial identity $binom{-p}{q}=binom{p+q-1}{q}(-1)^q$.
In (4) we select the coefficient of $x^{n-k}$.
In (5) we use the binomial identity $binom{p}{q}=binom{p}{p-q}$.
$endgroup$
add a comment |
$begingroup$
Here is a variation based upon the coefficient of operator $[x^n]$ which denotes the coefficient of $x^n$ of a series.
We obtain
begin{align*}
color{blue}{b_n=[x^n]f(x)}&=[x^n]frac{x^k}{(1-x)^{k+1}}\
&=[x^{n-k}](1-x)^{-k-1}tag{1}\
&=[x^{n-k}]sum_{j=0}^infty binom{-k-1}{j}(-x)^jtag{2}\
&=[x^{n-k}]sum_{j=0}^infty binom{k+j}{j}x^jtag{3}\
&=binom{n}{n-k}tag{4}\
&,,color{blue}{=binom{n}{k}}tag{5}
end{align*}
and the claim follows.
Comment:
In (1) we apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.
In (2) we apply the binomial series expansion.
In (3) we use the binomial identity $binom{-p}{q}=binom{p+q-1}{q}(-1)^q$.
In (4) we select the coefficient of $x^{n-k}$.
In (5) we use the binomial identity $binom{p}{q}=binom{p}{p-q}$.
$endgroup$
add a comment |
$begingroup$
Here is a variation based upon the coefficient of operator $[x^n]$ which denotes the coefficient of $x^n$ of a series.
We obtain
begin{align*}
color{blue}{b_n=[x^n]f(x)}&=[x^n]frac{x^k}{(1-x)^{k+1}}\
&=[x^{n-k}](1-x)^{-k-1}tag{1}\
&=[x^{n-k}]sum_{j=0}^infty binom{-k-1}{j}(-x)^jtag{2}\
&=[x^{n-k}]sum_{j=0}^infty binom{k+j}{j}x^jtag{3}\
&=binom{n}{n-k}tag{4}\
&,,color{blue}{=binom{n}{k}}tag{5}
end{align*}
and the claim follows.
Comment:
In (1) we apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.
In (2) we apply the binomial series expansion.
In (3) we use the binomial identity $binom{-p}{q}=binom{p+q-1}{q}(-1)^q$.
In (4) we select the coefficient of $x^{n-k}$.
In (5) we use the binomial identity $binom{p}{q}=binom{p}{p-q}$.
$endgroup$
Here is a variation based upon the coefficient of operator $[x^n]$ which denotes the coefficient of $x^n$ of a series.
We obtain
begin{align*}
color{blue}{b_n=[x^n]f(x)}&=[x^n]frac{x^k}{(1-x)^{k+1}}\
&=[x^{n-k}](1-x)^{-k-1}tag{1}\
&=[x^{n-k}]sum_{j=0}^infty binom{-k-1}{j}(-x)^jtag{2}\
&=[x^{n-k}]sum_{j=0}^infty binom{k+j}{j}x^jtag{3}\
&=binom{n}{n-k}tag{4}\
&,,color{blue}{=binom{n}{k}}tag{5}
end{align*}
and the claim follows.
Comment:
In (1) we apply the rule $[x^{p-q}]A(x)=[x^p]x^qA(x)$.
In (2) we apply the binomial series expansion.
In (3) we use the binomial identity $binom{-p}{q}=binom{p+q-1}{q}(-1)^q$.
In (4) we select the coefficient of $x^{n-k}$.
In (5) we use the binomial identity $binom{p}{q}=binom{p}{p-q}$.
answered Jan 26 at 18:52
Markus ScheuerMarkus Scheuer
62.6k459149
62.6k459149
add a comment |
add a comment |
$begingroup$
HINT:
Inductive hypothesis
begin{eqnarray*}
f_k(x)= sum_{n=k}^{infty} binom{n}{k} x^n = frac{x^k}{(1-x)^{k+1}}
end{eqnarray*}
and use
begin{eqnarray*}
binom{n}{k} + binom{n}{k+1}= binom{n+1}{k+1}.
end{eqnarray*}
More detail available on request.
Further Hint :
begin{eqnarray*}
f_{k+1}(x) &=& sum_{n=k+1}^{infty} binom{n}{k+1} x^n = sum_{n=k}^{infty} binom{n+1}{k+1} x^{n+1} \
&=& sum_{n=k}^{infty} binom{n}{k} x^{n+1} + sum_{n=k}^{infty} binom{n}{k+1} x^{n+1} \ cdots
end{eqnarray*}
$endgroup$
$begingroup$
From this I got $f_{k+1}(x)=frac{x^k}{(1-x)^{k+2}}$ so $f_{k+1}(x)=frac{1}{(1-x)}f_k(x)$ I never used induction on generating functions so I'm not sure what I'm supposed to do or if I did this correctly
$endgroup$
– Spasoje Durovic
Jan 25 at 16:39
add a comment |
$begingroup$
HINT:
Inductive hypothesis
begin{eqnarray*}
f_k(x)= sum_{n=k}^{infty} binom{n}{k} x^n = frac{x^k}{(1-x)^{k+1}}
end{eqnarray*}
and use
begin{eqnarray*}
binom{n}{k} + binom{n}{k+1}= binom{n+1}{k+1}.
end{eqnarray*}
More detail available on request.
Further Hint :
begin{eqnarray*}
f_{k+1}(x) &=& sum_{n=k+1}^{infty} binom{n}{k+1} x^n = sum_{n=k}^{infty} binom{n+1}{k+1} x^{n+1} \
&=& sum_{n=k}^{infty} binom{n}{k} x^{n+1} + sum_{n=k}^{infty} binom{n}{k+1} x^{n+1} \ cdots
end{eqnarray*}
$endgroup$
$begingroup$
From this I got $f_{k+1}(x)=frac{x^k}{(1-x)^{k+2}}$ so $f_{k+1}(x)=frac{1}{(1-x)}f_k(x)$ I never used induction on generating functions so I'm not sure what I'm supposed to do or if I did this correctly
$endgroup$
– Spasoje Durovic
Jan 25 at 16:39
add a comment |
$begingroup$
HINT:
Inductive hypothesis
begin{eqnarray*}
f_k(x)= sum_{n=k}^{infty} binom{n}{k} x^n = frac{x^k}{(1-x)^{k+1}}
end{eqnarray*}
and use
begin{eqnarray*}
binom{n}{k} + binom{n}{k+1}= binom{n+1}{k+1}.
end{eqnarray*}
More detail available on request.
Further Hint :
begin{eqnarray*}
f_{k+1}(x) &=& sum_{n=k+1}^{infty} binom{n}{k+1} x^n = sum_{n=k}^{infty} binom{n+1}{k+1} x^{n+1} \
&=& sum_{n=k}^{infty} binom{n}{k} x^{n+1} + sum_{n=k}^{infty} binom{n}{k+1} x^{n+1} \ cdots
end{eqnarray*}
$endgroup$
HINT:
Inductive hypothesis
begin{eqnarray*}
f_k(x)= sum_{n=k}^{infty} binom{n}{k} x^n = frac{x^k}{(1-x)^{k+1}}
end{eqnarray*}
and use
begin{eqnarray*}
binom{n}{k} + binom{n}{k+1}= binom{n+1}{k+1}.
end{eqnarray*}
More detail available on request.
Further Hint :
begin{eqnarray*}
f_{k+1}(x) &=& sum_{n=k+1}^{infty} binom{n}{k+1} x^n = sum_{n=k}^{infty} binom{n+1}{k+1} x^{n+1} \
&=& sum_{n=k}^{infty} binom{n}{k} x^{n+1} + sum_{n=k}^{infty} binom{n}{k+1} x^{n+1} \ cdots
end{eqnarray*}
edited Jan 25 at 16:52
answered Jan 25 at 16:08
Donald SplutterwitDonald Splutterwit
22.9k21446
22.9k21446
$begingroup$
From this I got $f_{k+1}(x)=frac{x^k}{(1-x)^{k+2}}$ so $f_{k+1}(x)=frac{1}{(1-x)}f_k(x)$ I never used induction on generating functions so I'm not sure what I'm supposed to do or if I did this correctly
$endgroup$
– Spasoje Durovic
Jan 25 at 16:39
add a comment |
$begingroup$
From this I got $f_{k+1}(x)=frac{x^k}{(1-x)^{k+2}}$ so $f_{k+1}(x)=frac{1}{(1-x)}f_k(x)$ I never used induction on generating functions so I'm not sure what I'm supposed to do or if I did this correctly
$endgroup$
– Spasoje Durovic
Jan 25 at 16:39
$begingroup$
From this I got $f_{k+1}(x)=frac{x^k}{(1-x)^{k+2}}$ so $f_{k+1}(x)=frac{1}{(1-x)}f_k(x)$ I never used induction on generating functions so I'm not sure what I'm supposed to do or if I did this correctly
$endgroup$
– Spasoje Durovic
Jan 25 at 16:39
$begingroup$
From this I got $f_{k+1}(x)=frac{x^k}{(1-x)^{k+2}}$ so $f_{k+1}(x)=frac{1}{(1-x)}f_k(x)$ I never used induction on generating functions so I'm not sure what I'm supposed to do or if I did this correctly
$endgroup$
– Spasoje Durovic
Jan 25 at 16:39
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087246%2ffinding-the-closed-form-of-a-generating-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown