Find the standard deviation of $|X−Y|$
$begingroup$
Let $X$ and $Y$ be independent random variables with a Bernoulli Distribution $Ber(1/3)$. Find the standard deviation of $|X−Y|$.
The Standard Deviation in the square root of the variance. For a $Ber(1/3)$ the $Var(X)=Var(Y)=1/3(1-1/3)=2/9$, now how can I calculate $sigma=sqrt{Var(|X−Y|)}$? Because my idea was to subtract the two $Var$ but then the result will be $0$, but it should be $frac{2sqrt{5}}{9}$, how can I solve it?
probability statistics
$endgroup$
add a comment |
$begingroup$
Let $X$ and $Y$ be independent random variables with a Bernoulli Distribution $Ber(1/3)$. Find the standard deviation of $|X−Y|$.
The Standard Deviation in the square root of the variance. For a $Ber(1/3)$ the $Var(X)=Var(Y)=1/3(1-1/3)=2/9$, now how can I calculate $sigma=sqrt{Var(|X−Y|)}$? Because my idea was to subtract the two $Var$ but then the result will be $0$, but it should be $frac{2sqrt{5}}{9}$, how can I solve it?
probability statistics
$endgroup$
3
$begingroup$
$Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
$endgroup$
– Robert Israel
Jan 25 at 16:18
$begingroup$
@RobertIsrael yes it's bernoulli, which four cases?
$endgroup$
– FTAC
Jan 25 at 16:20
add a comment |
$begingroup$
Let $X$ and $Y$ be independent random variables with a Bernoulli Distribution $Ber(1/3)$. Find the standard deviation of $|X−Y|$.
The Standard Deviation in the square root of the variance. For a $Ber(1/3)$ the $Var(X)=Var(Y)=1/3(1-1/3)=2/9$, now how can I calculate $sigma=sqrt{Var(|X−Y|)}$? Because my idea was to subtract the two $Var$ but then the result will be $0$, but it should be $frac{2sqrt{5}}{9}$, how can I solve it?
probability statistics
$endgroup$
Let $X$ and $Y$ be independent random variables with a Bernoulli Distribution $Ber(1/3)$. Find the standard deviation of $|X−Y|$.
The Standard Deviation in the square root of the variance. For a $Ber(1/3)$ the $Var(X)=Var(Y)=1/3(1-1/3)=2/9$, now how can I calculate $sigma=sqrt{Var(|X−Y|)}$? Because my idea was to subtract the two $Var$ but then the result will be $0$, but it should be $frac{2sqrt{5}}{9}$, how can I solve it?
probability statistics
probability statistics
edited Jan 25 at 16:19
FTAC
asked Jan 25 at 16:06
FTACFTAC
2649
2649
3
$begingroup$
$Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
$endgroup$
– Robert Israel
Jan 25 at 16:18
$begingroup$
@RobertIsrael yes it's bernoulli, which four cases?
$endgroup$
– FTAC
Jan 25 at 16:20
add a comment |
3
$begingroup$
$Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
$endgroup$
– Robert Israel
Jan 25 at 16:18
$begingroup$
@RobertIsrael yes it's bernoulli, which four cases?
$endgroup$
– FTAC
Jan 25 at 16:20
3
3
$begingroup$
$Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
$endgroup$
– Robert Israel
Jan 25 at 16:18
$begingroup$
$Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
$endgroup$
– Robert Israel
Jan 25 at 16:18
$begingroup$
@RobertIsrael yes it's bernoulli, which four cases?
$endgroup$
– FTAC
Jan 25 at 16:20
$begingroup$
@RobertIsrael yes it's bernoulli, which four cases?
$endgroup$
– FTAC
Jan 25 at 16:20
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
begin{equation}
|X-Y|= begin{cases}
1 & text{iff} quad (X=1 quad wedgequad Y=0)quad vee quad (X=0 quad wedgequad Y=1) \
0 & text{iff} quad (X=1 quad wedgequad Y=1)quad vee quad (X=0 quad wedgequad Y=0)
end{cases}
end{equation}
So $|X-Y|$ is another Bernoulli random variable and
$Pr(|X-Y|=1)=Pr(X=1)Pr(Y=0)+Pr(X=0)Pr(Y=1)=(1/3)(2/3)+(2/3)(1/3)=4/9=p$
and then
$Var(|X-Y|)=(4/9)(5/9)=20/81 implies SD=sqrt{20/81}=(2sqrt{5})/9$,
as required.
$endgroup$
$begingroup$
thanks for the answer, what does Pr mean?
$endgroup$
– FTAC
Jan 25 at 17:00
2
$begingroup$
@FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
$endgroup$
– callculus
Jan 25 at 17:25
add a comment |
$begingroup$
Hints:
$X$ could be $1$ and $Y$ could be $0$, or the other way round, or both $1$, or both $0$.
In the first two cases their difference would be $1$ while in the last two it would be $0$.
So $|X-Y|$ is another Bernoulli random variable, and you need to find the probability it is $1$ and then calculate the variance and take its square root
$endgroup$
add a comment |
$begingroup$
In general, let $X,Ysim B(p)$. Refer to the table:
$$begin{array}{c|c|c|c|c|c} X & P(X)&Y&P(Y)&|X-Y|&P(|X-Y|)&|X-Y|^2&P(|X-Y|^2)\
hline
0&q&0&q&0&q^2&0&q^2\
0&q&1&p&1&qp&1&qp\
1&p&0&q&1&pq&1&pq\
1&p&1&p&0&p^2&0&p^2\
end{array}\
text{1-method}: |X-Y|sim B(2pq); \
Var(|X-Y|)=2pqcdot (1-2pq).\
text{2-method}: Var(|X-Y|)=mathbb E(|X-Y|^2)-[mathbb E(|X-Y|)]^2=\
2pq-[2pq]^2 =2pqcdot (1-2pq).$$
$endgroup$
add a comment |
$begingroup$
The easiest thing is to use a table to obtain the distribution.
The pdf of $|X-Y|$
$$begin{array}{|c|c|c|c|} hline X/Y & 0left(p=frac13right)&1left(p=frac23right) \ hline 0left(p=frac13right) & 0 &1 \ hline 1left(p=frac23right) & 1 &0 \ hline end{array}$$
Now you can use the well known formulas to obtain $Var(|X-Y|)$
$E(|X-Y|)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|cdot p(x,y)$
$E(|X-Y|^2)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|^2cdot
p(x,y)$$Var(Z)=E(Z^2)-E^2(Z)$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087261%2ffind-the-standard-deviation-of-x%25e2%2588%2592y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{equation}
|X-Y|= begin{cases}
1 & text{iff} quad (X=1 quad wedgequad Y=0)quad vee quad (X=0 quad wedgequad Y=1) \
0 & text{iff} quad (X=1 quad wedgequad Y=1)quad vee quad (X=0 quad wedgequad Y=0)
end{cases}
end{equation}
So $|X-Y|$ is another Bernoulli random variable and
$Pr(|X-Y|=1)=Pr(X=1)Pr(Y=0)+Pr(X=0)Pr(Y=1)=(1/3)(2/3)+(2/3)(1/3)=4/9=p$
and then
$Var(|X-Y|)=(4/9)(5/9)=20/81 implies SD=sqrt{20/81}=(2sqrt{5})/9$,
as required.
$endgroup$
$begingroup$
thanks for the answer, what does Pr mean?
$endgroup$
– FTAC
Jan 25 at 17:00
2
$begingroup$
@FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
$endgroup$
– callculus
Jan 25 at 17:25
add a comment |
$begingroup$
begin{equation}
|X-Y|= begin{cases}
1 & text{iff} quad (X=1 quad wedgequad Y=0)quad vee quad (X=0 quad wedgequad Y=1) \
0 & text{iff} quad (X=1 quad wedgequad Y=1)quad vee quad (X=0 quad wedgequad Y=0)
end{cases}
end{equation}
So $|X-Y|$ is another Bernoulli random variable and
$Pr(|X-Y|=1)=Pr(X=1)Pr(Y=0)+Pr(X=0)Pr(Y=1)=(1/3)(2/3)+(2/3)(1/3)=4/9=p$
and then
$Var(|X-Y|)=(4/9)(5/9)=20/81 implies SD=sqrt{20/81}=(2sqrt{5})/9$,
as required.
$endgroup$
$begingroup$
thanks for the answer, what does Pr mean?
$endgroup$
– FTAC
Jan 25 at 17:00
2
$begingroup$
@FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
$endgroup$
– callculus
Jan 25 at 17:25
add a comment |
$begingroup$
begin{equation}
|X-Y|= begin{cases}
1 & text{iff} quad (X=1 quad wedgequad Y=0)quad vee quad (X=0 quad wedgequad Y=1) \
0 & text{iff} quad (X=1 quad wedgequad Y=1)quad vee quad (X=0 quad wedgequad Y=0)
end{cases}
end{equation}
So $|X-Y|$ is another Bernoulli random variable and
$Pr(|X-Y|=1)=Pr(X=1)Pr(Y=0)+Pr(X=0)Pr(Y=1)=(1/3)(2/3)+(2/3)(1/3)=4/9=p$
and then
$Var(|X-Y|)=(4/9)(5/9)=20/81 implies SD=sqrt{20/81}=(2sqrt{5})/9$,
as required.
$endgroup$
begin{equation}
|X-Y|= begin{cases}
1 & text{iff} quad (X=1 quad wedgequad Y=0)quad vee quad (X=0 quad wedgequad Y=1) \
0 & text{iff} quad (X=1 quad wedgequad Y=1)quad vee quad (X=0 quad wedgequad Y=0)
end{cases}
end{equation}
So $|X-Y|$ is another Bernoulli random variable and
$Pr(|X-Y|=1)=Pr(X=1)Pr(Y=0)+Pr(X=0)Pr(Y=1)=(1/3)(2/3)+(2/3)(1/3)=4/9=p$
and then
$Var(|X-Y|)=(4/9)(5/9)=20/81 implies SD=sqrt{20/81}=(2sqrt{5})/9$,
as required.
answered Jan 25 at 16:55
amator2357amator2357
729
729
$begingroup$
thanks for the answer, what does Pr mean?
$endgroup$
– FTAC
Jan 25 at 17:00
2
$begingroup$
@FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
$endgroup$
– callculus
Jan 25 at 17:25
add a comment |
$begingroup$
thanks for the answer, what does Pr mean?
$endgroup$
– FTAC
Jan 25 at 17:00
2
$begingroup$
@FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
$endgroup$
– callculus
Jan 25 at 17:25
$begingroup$
thanks for the answer, what does Pr mean?
$endgroup$
– FTAC
Jan 25 at 17:00
$begingroup$
thanks for the answer, what does Pr mean?
$endgroup$
– FTAC
Jan 25 at 17:00
2
2
$begingroup$
@FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
$endgroup$
– callculus
Jan 25 at 17:25
$begingroup$
@FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
$endgroup$
– callculus
Jan 25 at 17:25
add a comment |
$begingroup$
Hints:
$X$ could be $1$ and $Y$ could be $0$, or the other way round, or both $1$, or both $0$.
In the first two cases their difference would be $1$ while in the last two it would be $0$.
So $|X-Y|$ is another Bernoulli random variable, and you need to find the probability it is $1$ and then calculate the variance and take its square root
$endgroup$
add a comment |
$begingroup$
Hints:
$X$ could be $1$ and $Y$ could be $0$, or the other way round, or both $1$, or both $0$.
In the first two cases their difference would be $1$ while in the last two it would be $0$.
So $|X-Y|$ is another Bernoulli random variable, and you need to find the probability it is $1$ and then calculate the variance and take its square root
$endgroup$
add a comment |
$begingroup$
Hints:
$X$ could be $1$ and $Y$ could be $0$, or the other way round, or both $1$, or both $0$.
In the first two cases their difference would be $1$ while in the last two it would be $0$.
So $|X-Y|$ is another Bernoulli random variable, and you need to find the probability it is $1$ and then calculate the variance and take its square root
$endgroup$
Hints:
$X$ could be $1$ and $Y$ could be $0$, or the other way round, or both $1$, or both $0$.
In the first two cases their difference would be $1$ while in the last two it would be $0$.
So $|X-Y|$ is another Bernoulli random variable, and you need to find the probability it is $1$ and then calculate the variance and take its square root
answered Jan 25 at 16:37
HenryHenry
101k481168
101k481168
add a comment |
add a comment |
$begingroup$
In general, let $X,Ysim B(p)$. Refer to the table:
$$begin{array}{c|c|c|c|c|c} X & P(X)&Y&P(Y)&|X-Y|&P(|X-Y|)&|X-Y|^2&P(|X-Y|^2)\
hline
0&q&0&q&0&q^2&0&q^2\
0&q&1&p&1&qp&1&qp\
1&p&0&q&1&pq&1&pq\
1&p&1&p&0&p^2&0&p^2\
end{array}\
text{1-method}: |X-Y|sim B(2pq); \
Var(|X-Y|)=2pqcdot (1-2pq).\
text{2-method}: Var(|X-Y|)=mathbb E(|X-Y|^2)-[mathbb E(|X-Y|)]^2=\
2pq-[2pq]^2 =2pqcdot (1-2pq).$$
$endgroup$
add a comment |
$begingroup$
In general, let $X,Ysim B(p)$. Refer to the table:
$$begin{array}{c|c|c|c|c|c} X & P(X)&Y&P(Y)&|X-Y|&P(|X-Y|)&|X-Y|^2&P(|X-Y|^2)\
hline
0&q&0&q&0&q^2&0&q^2\
0&q&1&p&1&qp&1&qp\
1&p&0&q&1&pq&1&pq\
1&p&1&p&0&p^2&0&p^2\
end{array}\
text{1-method}: |X-Y|sim B(2pq); \
Var(|X-Y|)=2pqcdot (1-2pq).\
text{2-method}: Var(|X-Y|)=mathbb E(|X-Y|^2)-[mathbb E(|X-Y|)]^2=\
2pq-[2pq]^2 =2pqcdot (1-2pq).$$
$endgroup$
add a comment |
$begingroup$
In general, let $X,Ysim B(p)$. Refer to the table:
$$begin{array}{c|c|c|c|c|c} X & P(X)&Y&P(Y)&|X-Y|&P(|X-Y|)&|X-Y|^2&P(|X-Y|^2)\
hline
0&q&0&q&0&q^2&0&q^2\
0&q&1&p&1&qp&1&qp\
1&p&0&q&1&pq&1&pq\
1&p&1&p&0&p^2&0&p^2\
end{array}\
text{1-method}: |X-Y|sim B(2pq); \
Var(|X-Y|)=2pqcdot (1-2pq).\
text{2-method}: Var(|X-Y|)=mathbb E(|X-Y|^2)-[mathbb E(|X-Y|)]^2=\
2pq-[2pq]^2 =2pqcdot (1-2pq).$$
$endgroup$
In general, let $X,Ysim B(p)$. Refer to the table:
$$begin{array}{c|c|c|c|c|c} X & P(X)&Y&P(Y)&|X-Y|&P(|X-Y|)&|X-Y|^2&P(|X-Y|^2)\
hline
0&q&0&q&0&q^2&0&q^2\
0&q&1&p&1&qp&1&qp\
1&p&0&q&1&pq&1&pq\
1&p&1&p&0&p^2&0&p^2\
end{array}\
text{1-method}: |X-Y|sim B(2pq); \
Var(|X-Y|)=2pqcdot (1-2pq).\
text{2-method}: Var(|X-Y|)=mathbb E(|X-Y|^2)-[mathbb E(|X-Y|)]^2=\
2pq-[2pq]^2 =2pqcdot (1-2pq).$$
answered Jan 25 at 17:15
farruhotafarruhota
20.8k2741
20.8k2741
add a comment |
add a comment |
$begingroup$
The easiest thing is to use a table to obtain the distribution.
The pdf of $|X-Y|$
$$begin{array}{|c|c|c|c|} hline X/Y & 0left(p=frac13right)&1left(p=frac23right) \ hline 0left(p=frac13right) & 0 &1 \ hline 1left(p=frac23right) & 1 &0 \ hline end{array}$$
Now you can use the well known formulas to obtain $Var(|X-Y|)$
$E(|X-Y|)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|cdot p(x,y)$
$E(|X-Y|^2)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|^2cdot
p(x,y)$$Var(Z)=E(Z^2)-E^2(Z)$
$endgroup$
add a comment |
$begingroup$
The easiest thing is to use a table to obtain the distribution.
The pdf of $|X-Y|$
$$begin{array}{|c|c|c|c|} hline X/Y & 0left(p=frac13right)&1left(p=frac23right) \ hline 0left(p=frac13right) & 0 &1 \ hline 1left(p=frac23right) & 1 &0 \ hline end{array}$$
Now you can use the well known formulas to obtain $Var(|X-Y|)$
$E(|X-Y|)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|cdot p(x,y)$
$E(|X-Y|^2)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|^2cdot
p(x,y)$$Var(Z)=E(Z^2)-E^2(Z)$
$endgroup$
add a comment |
$begingroup$
The easiest thing is to use a table to obtain the distribution.
The pdf of $|X-Y|$
$$begin{array}{|c|c|c|c|} hline X/Y & 0left(p=frac13right)&1left(p=frac23right) \ hline 0left(p=frac13right) & 0 &1 \ hline 1left(p=frac23right) & 1 &0 \ hline end{array}$$
Now you can use the well known formulas to obtain $Var(|X-Y|)$
$E(|X-Y|)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|cdot p(x,y)$
$E(|X-Y|^2)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|^2cdot
p(x,y)$$Var(Z)=E(Z^2)-E^2(Z)$
$endgroup$
The easiest thing is to use a table to obtain the distribution.
The pdf of $|X-Y|$
$$begin{array}{|c|c|c|c|} hline X/Y & 0left(p=frac13right)&1left(p=frac23right) \ hline 0left(p=frac13right) & 0 &1 \ hline 1left(p=frac23right) & 1 &0 \ hline end{array}$$
Now you can use the well known formulas to obtain $Var(|X-Y|)$
$E(|X-Y|)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|cdot p(x,y)$
$E(|X-Y|^2)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|^2cdot
p(x,y)$$Var(Z)=E(Z^2)-E^2(Z)$
answered Jan 25 at 17:03
callculuscallculus
18.3k31427
18.3k31427
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087261%2ffind-the-standard-deviation-of-x%25e2%2588%2592y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
$Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
$endgroup$
– Robert Israel
Jan 25 at 16:18
$begingroup$
@RobertIsrael yes it's bernoulli, which four cases?
$endgroup$
– FTAC
Jan 25 at 16:20