Find the standard deviation of $|X−Y|$












2












$begingroup$



Let $X$ and $Y$ be independent random variables with a Bernoulli Distribution $Ber(1/3)$. Find the standard deviation of $|X−Y|$.




The Standard Deviation in the square root of the variance. For a $Ber(1/3)$ the $Var(X)=Var(Y)=1/3(1-1/3)=2/9$, now how can I calculate $sigma=sqrt{Var(|X−Y|)}$? Because my idea was to subtract the two $Var$ but then the result will be $0$, but it should be $frac{2sqrt{5}}{9}$, how can I solve it?










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    $Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
    $endgroup$
    – Robert Israel
    Jan 25 at 16:18










  • $begingroup$
    @RobertIsrael yes it's bernoulli, which four cases?
    $endgroup$
    – FTAC
    Jan 25 at 16:20
















2












$begingroup$



Let $X$ and $Y$ be independent random variables with a Bernoulli Distribution $Ber(1/3)$. Find the standard deviation of $|X−Y|$.




The Standard Deviation in the square root of the variance. For a $Ber(1/3)$ the $Var(X)=Var(Y)=1/3(1-1/3)=2/9$, now how can I calculate $sigma=sqrt{Var(|X−Y|)}$? Because my idea was to subtract the two $Var$ but then the result will be $0$, but it should be $frac{2sqrt{5}}{9}$, how can I solve it?










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    $Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
    $endgroup$
    – Robert Israel
    Jan 25 at 16:18










  • $begingroup$
    @RobertIsrael yes it's bernoulli, which four cases?
    $endgroup$
    – FTAC
    Jan 25 at 16:20














2












2








2


1



$begingroup$



Let $X$ and $Y$ be independent random variables with a Bernoulli Distribution $Ber(1/3)$. Find the standard deviation of $|X−Y|$.




The Standard Deviation in the square root of the variance. For a $Ber(1/3)$ the $Var(X)=Var(Y)=1/3(1-1/3)=2/9$, now how can I calculate $sigma=sqrt{Var(|X−Y|)}$? Because my idea was to subtract the two $Var$ but then the result will be $0$, but it should be $frac{2sqrt{5}}{9}$, how can I solve it?










share|cite|improve this question











$endgroup$





Let $X$ and $Y$ be independent random variables with a Bernoulli Distribution $Ber(1/3)$. Find the standard deviation of $|X−Y|$.




The Standard Deviation in the square root of the variance. For a $Ber(1/3)$ the $Var(X)=Var(Y)=1/3(1-1/3)=2/9$, now how can I calculate $sigma=sqrt{Var(|X−Y|)}$? Because my idea was to subtract the two $Var$ but then the result will be $0$, but it should be $frac{2sqrt{5}}{9}$, how can I solve it?







probability statistics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 25 at 16:19







FTAC

















asked Jan 25 at 16:06









FTACFTAC

2649




2649








  • 3




    $begingroup$
    $Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
    $endgroup$
    – Robert Israel
    Jan 25 at 16:18










  • $begingroup$
    @RobertIsrael yes it's bernoulli, which four cases?
    $endgroup$
    – FTAC
    Jan 25 at 16:20














  • 3




    $begingroup$
    $Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
    $endgroup$
    – Robert Israel
    Jan 25 at 16:18










  • $begingroup$
    @RobertIsrael yes it's bernoulli, which four cases?
    $endgroup$
    – FTAC
    Jan 25 at 16:20








3




3




$begingroup$
$Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
$endgroup$
– Robert Israel
Jan 25 at 16:18




$begingroup$
$Ber$ = bernoulli? There are only $4$ outcomes to consider, so it's easy to do this from the definition.
$endgroup$
– Robert Israel
Jan 25 at 16:18












$begingroup$
@RobertIsrael yes it's bernoulli, which four cases?
$endgroup$
– FTAC
Jan 25 at 16:20




$begingroup$
@RobertIsrael yes it's bernoulli, which four cases?
$endgroup$
– FTAC
Jan 25 at 16:20










4 Answers
4






active

oldest

votes


















2












$begingroup$

begin{equation}
|X-Y|= begin{cases}
1 & text{iff} quad (X=1 quad wedgequad Y=0)quad vee quad (X=0 quad wedgequad Y=1) \
0 & text{iff} quad (X=1 quad wedgequad Y=1)quad vee quad (X=0 quad wedgequad Y=0)
end{cases}
end{equation}

So $|X-Y|$ is another Bernoulli random variable and



$Pr(|X-Y|=1)=Pr(X=1)Pr(Y=0)+Pr(X=0)Pr(Y=1)=(1/3)(2/3)+(2/3)(1/3)=4/9=p$



and then



$Var(|X-Y|)=(4/9)(5/9)=20/81 implies SD=sqrt{20/81}=(2sqrt{5})/9$,
as required.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thanks for the answer, what does Pr mean?
    $endgroup$
    – FTAC
    Jan 25 at 17:00






  • 2




    $begingroup$
    @FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
    $endgroup$
    – callculus
    Jan 25 at 17:25





















2












$begingroup$

Hints:




  • $X$ could be $1$ and $Y$ could be $0$, or the other way round, or both $1$, or both $0$.


  • In the first two cases their difference would be $1$ while in the last two it would be $0$.


  • So $|X-Y|$ is another Bernoulli random variable, and you need to find the probability it is $1$ and then calculate the variance and take its square root







share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    In general, let $X,Ysim B(p)$. Refer to the table:
    $$begin{array}{c|c|c|c|c|c} X & P(X)&Y&P(Y)&|X-Y|&P(|X-Y|)&|X-Y|^2&P(|X-Y|^2)\
    hline
    0&q&0&q&0&q^2&0&q^2\
    0&q&1&p&1&qp&1&qp\
    1&p&0&q&1&pq&1&pq\
    1&p&1&p&0&p^2&0&p^2\
    end{array}\
    text{1-method}: |X-Y|sim B(2pq); \
    Var(|X-Y|)=2pqcdot (1-2pq).\
    text{2-method}: Var(|X-Y|)=mathbb E(|X-Y|^2)-[mathbb E(|X-Y|)]^2=\
    2pq-[2pq]^2 =2pqcdot (1-2pq).$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      The easiest thing is to use a table to obtain the distribution.



      The pdf of $|X-Y|$



      $$begin{array}{|c|c|c|c|} hline X/Y & 0left(p=frac13right)&1left(p=frac23right) \ hline 0left(p=frac13right) & 0 &1 \ hline 1left(p=frac23right) & 1 &0 \ hline end{array}$$



      Now you can use the well known formulas to obtain $Var(|X-Y|)$




      • $E(|X-Y|)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|cdot p(x,y)$


      • $E(|X-Y|^2)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|^2cdot
        p(x,y)$


      • $Var(Z)=E(Z^2)-E^2(Z)$







      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087261%2ffind-the-standard-deviation-of-x%25e2%2588%2592y%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        begin{equation}
        |X-Y|= begin{cases}
        1 & text{iff} quad (X=1 quad wedgequad Y=0)quad vee quad (X=0 quad wedgequad Y=1) \
        0 & text{iff} quad (X=1 quad wedgequad Y=1)quad vee quad (X=0 quad wedgequad Y=0)
        end{cases}
        end{equation}

        So $|X-Y|$ is another Bernoulli random variable and



        $Pr(|X-Y|=1)=Pr(X=1)Pr(Y=0)+Pr(X=0)Pr(Y=1)=(1/3)(2/3)+(2/3)(1/3)=4/9=p$



        and then



        $Var(|X-Y|)=(4/9)(5/9)=20/81 implies SD=sqrt{20/81}=(2sqrt{5})/9$,
        as required.






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          thanks for the answer, what does Pr mean?
          $endgroup$
          – FTAC
          Jan 25 at 17:00






        • 2




          $begingroup$
          @FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
          $endgroup$
          – callculus
          Jan 25 at 17:25


















        2












        $begingroup$

        begin{equation}
        |X-Y|= begin{cases}
        1 & text{iff} quad (X=1 quad wedgequad Y=0)quad vee quad (X=0 quad wedgequad Y=1) \
        0 & text{iff} quad (X=1 quad wedgequad Y=1)quad vee quad (X=0 quad wedgequad Y=0)
        end{cases}
        end{equation}

        So $|X-Y|$ is another Bernoulli random variable and



        $Pr(|X-Y|=1)=Pr(X=1)Pr(Y=0)+Pr(X=0)Pr(Y=1)=(1/3)(2/3)+(2/3)(1/3)=4/9=p$



        and then



        $Var(|X-Y|)=(4/9)(5/9)=20/81 implies SD=sqrt{20/81}=(2sqrt{5})/9$,
        as required.






        share|cite|improve this answer









        $endgroup$













        • $begingroup$
          thanks for the answer, what does Pr mean?
          $endgroup$
          – FTAC
          Jan 25 at 17:00






        • 2




          $begingroup$
          @FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
          $endgroup$
          – callculus
          Jan 25 at 17:25
















        2












        2








        2





        $begingroup$

        begin{equation}
        |X-Y|= begin{cases}
        1 & text{iff} quad (X=1 quad wedgequad Y=0)quad vee quad (X=0 quad wedgequad Y=1) \
        0 & text{iff} quad (X=1 quad wedgequad Y=1)quad vee quad (X=0 quad wedgequad Y=0)
        end{cases}
        end{equation}

        So $|X-Y|$ is another Bernoulli random variable and



        $Pr(|X-Y|=1)=Pr(X=1)Pr(Y=0)+Pr(X=0)Pr(Y=1)=(1/3)(2/3)+(2/3)(1/3)=4/9=p$



        and then



        $Var(|X-Y|)=(4/9)(5/9)=20/81 implies SD=sqrt{20/81}=(2sqrt{5})/9$,
        as required.






        share|cite|improve this answer









        $endgroup$



        begin{equation}
        |X-Y|= begin{cases}
        1 & text{iff} quad (X=1 quad wedgequad Y=0)quad vee quad (X=0 quad wedgequad Y=1) \
        0 & text{iff} quad (X=1 quad wedgequad Y=1)quad vee quad (X=0 quad wedgequad Y=0)
        end{cases}
        end{equation}

        So $|X-Y|$ is another Bernoulli random variable and



        $Pr(|X-Y|=1)=Pr(X=1)Pr(Y=0)+Pr(X=0)Pr(Y=1)=(1/3)(2/3)+(2/3)(1/3)=4/9=p$



        and then



        $Var(|X-Y|)=(4/9)(5/9)=20/81 implies SD=sqrt{20/81}=(2sqrt{5})/9$,
        as required.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 25 at 16:55









        amator2357amator2357

        729




        729












        • $begingroup$
          thanks for the answer, what does Pr mean?
          $endgroup$
          – FTAC
          Jan 25 at 17:00






        • 2




          $begingroup$
          @FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
          $endgroup$
          – callculus
          Jan 25 at 17:25




















        • $begingroup$
          thanks for the answer, what does Pr mean?
          $endgroup$
          – FTAC
          Jan 25 at 17:00






        • 2




          $begingroup$
          @FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
          $endgroup$
          – callculus
          Jan 25 at 17:25


















        $begingroup$
        thanks for the answer, what does Pr mean?
        $endgroup$
        – FTAC
        Jan 25 at 17:00




        $begingroup$
        thanks for the answer, what does Pr mean?
        $endgroup$
        – FTAC
        Jan 25 at 17:00




        2




        2




        $begingroup$
        @FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
        $endgroup$
        – callculus
        Jan 25 at 17:25






        $begingroup$
        @FabioTaccaliti The same as $P()$ (in statistical context). $P(X=0)$ or $Pr(X=0)$ is the probability that the random variable $X$ takes the value $0$.
        $endgroup$
        – callculus
        Jan 25 at 17:25













        2












        $begingroup$

        Hints:




        • $X$ could be $1$ and $Y$ could be $0$, or the other way round, or both $1$, or both $0$.


        • In the first two cases their difference would be $1$ while in the last two it would be $0$.


        • So $|X-Y|$ is another Bernoulli random variable, and you need to find the probability it is $1$ and then calculate the variance and take its square root







        share|cite|improve this answer









        $endgroup$


















          2












          $begingroup$

          Hints:




          • $X$ could be $1$ and $Y$ could be $0$, or the other way round, or both $1$, or both $0$.


          • In the first two cases their difference would be $1$ while in the last two it would be $0$.


          • So $|X-Y|$ is another Bernoulli random variable, and you need to find the probability it is $1$ and then calculate the variance and take its square root







          share|cite|improve this answer









          $endgroup$
















            2












            2








            2





            $begingroup$

            Hints:




            • $X$ could be $1$ and $Y$ could be $0$, or the other way round, or both $1$, or both $0$.


            • In the first two cases their difference would be $1$ while in the last two it would be $0$.


            • So $|X-Y|$ is another Bernoulli random variable, and you need to find the probability it is $1$ and then calculate the variance and take its square root







            share|cite|improve this answer









            $endgroup$



            Hints:




            • $X$ could be $1$ and $Y$ could be $0$, or the other way round, or both $1$, or both $0$.


            • In the first two cases their difference would be $1$ while in the last two it would be $0$.


            • So $|X-Y|$ is another Bernoulli random variable, and you need to find the probability it is $1$ and then calculate the variance and take its square root








            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 25 at 16:37









            HenryHenry

            101k481168




            101k481168























                2












                $begingroup$

                In general, let $X,Ysim B(p)$. Refer to the table:
                $$begin{array}{c|c|c|c|c|c} X & P(X)&Y&P(Y)&|X-Y|&P(|X-Y|)&|X-Y|^2&P(|X-Y|^2)\
                hline
                0&q&0&q&0&q^2&0&q^2\
                0&q&1&p&1&qp&1&qp\
                1&p&0&q&1&pq&1&pq\
                1&p&1&p&0&p^2&0&p^2\
                end{array}\
                text{1-method}: |X-Y|sim B(2pq); \
                Var(|X-Y|)=2pqcdot (1-2pq).\
                text{2-method}: Var(|X-Y|)=mathbb E(|X-Y|^2)-[mathbb E(|X-Y|)]^2=\
                2pq-[2pq]^2 =2pqcdot (1-2pq).$$






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  In general, let $X,Ysim B(p)$. Refer to the table:
                  $$begin{array}{c|c|c|c|c|c} X & P(X)&Y&P(Y)&|X-Y|&P(|X-Y|)&|X-Y|^2&P(|X-Y|^2)\
                  hline
                  0&q&0&q&0&q^2&0&q^2\
                  0&q&1&p&1&qp&1&qp\
                  1&p&0&q&1&pq&1&pq\
                  1&p&1&p&0&p^2&0&p^2\
                  end{array}\
                  text{1-method}: |X-Y|sim B(2pq); \
                  Var(|X-Y|)=2pqcdot (1-2pq).\
                  text{2-method}: Var(|X-Y|)=mathbb E(|X-Y|^2)-[mathbb E(|X-Y|)]^2=\
                  2pq-[2pq]^2 =2pqcdot (1-2pq).$$






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    In general, let $X,Ysim B(p)$. Refer to the table:
                    $$begin{array}{c|c|c|c|c|c} X & P(X)&Y&P(Y)&|X-Y|&P(|X-Y|)&|X-Y|^2&P(|X-Y|^2)\
                    hline
                    0&q&0&q&0&q^2&0&q^2\
                    0&q&1&p&1&qp&1&qp\
                    1&p&0&q&1&pq&1&pq\
                    1&p&1&p&0&p^2&0&p^2\
                    end{array}\
                    text{1-method}: |X-Y|sim B(2pq); \
                    Var(|X-Y|)=2pqcdot (1-2pq).\
                    text{2-method}: Var(|X-Y|)=mathbb E(|X-Y|^2)-[mathbb E(|X-Y|)]^2=\
                    2pq-[2pq]^2 =2pqcdot (1-2pq).$$






                    share|cite|improve this answer









                    $endgroup$



                    In general, let $X,Ysim B(p)$. Refer to the table:
                    $$begin{array}{c|c|c|c|c|c} X & P(X)&Y&P(Y)&|X-Y|&P(|X-Y|)&|X-Y|^2&P(|X-Y|^2)\
                    hline
                    0&q&0&q&0&q^2&0&q^2\
                    0&q&1&p&1&qp&1&qp\
                    1&p&0&q&1&pq&1&pq\
                    1&p&1&p&0&p^2&0&p^2\
                    end{array}\
                    text{1-method}: |X-Y|sim B(2pq); \
                    Var(|X-Y|)=2pqcdot (1-2pq).\
                    text{2-method}: Var(|X-Y|)=mathbb E(|X-Y|^2)-[mathbb E(|X-Y|)]^2=\
                    2pq-[2pq]^2 =2pqcdot (1-2pq).$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 25 at 17:15









                    farruhotafarruhota

                    20.8k2741




                    20.8k2741























                        1












                        $begingroup$

                        The easiest thing is to use a table to obtain the distribution.



                        The pdf of $|X-Y|$



                        $$begin{array}{|c|c|c|c|} hline X/Y & 0left(p=frac13right)&1left(p=frac23right) \ hline 0left(p=frac13right) & 0 &1 \ hline 1left(p=frac23right) & 1 &0 \ hline end{array}$$



                        Now you can use the well known formulas to obtain $Var(|X-Y|)$




                        • $E(|X-Y|)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|cdot p(x,y)$


                        • $E(|X-Y|^2)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|^2cdot
                          p(x,y)$


                        • $Var(Z)=E(Z^2)-E^2(Z)$







                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          The easiest thing is to use a table to obtain the distribution.



                          The pdf of $|X-Y|$



                          $$begin{array}{|c|c|c|c|} hline X/Y & 0left(p=frac13right)&1left(p=frac23right) \ hline 0left(p=frac13right) & 0 &1 \ hline 1left(p=frac23right) & 1 &0 \ hline end{array}$$



                          Now you can use the well known formulas to obtain $Var(|X-Y|)$




                          • $E(|X-Y|)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|cdot p(x,y)$


                          • $E(|X-Y|^2)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|^2cdot
                            p(x,y)$


                          • $Var(Z)=E(Z^2)-E^2(Z)$







                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            The easiest thing is to use a table to obtain the distribution.



                            The pdf of $|X-Y|$



                            $$begin{array}{|c|c|c|c|} hline X/Y & 0left(p=frac13right)&1left(p=frac23right) \ hline 0left(p=frac13right) & 0 &1 \ hline 1left(p=frac23right) & 1 &0 \ hline end{array}$$



                            Now you can use the well known formulas to obtain $Var(|X-Y|)$




                            • $E(|X-Y|)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|cdot p(x,y)$


                            • $E(|X-Y|^2)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|^2cdot
                              p(x,y)$


                            • $Var(Z)=E(Z^2)-E^2(Z)$







                            share|cite|improve this answer









                            $endgroup$



                            The easiest thing is to use a table to obtain the distribution.



                            The pdf of $|X-Y|$



                            $$begin{array}{|c|c|c|c|} hline X/Y & 0left(p=frac13right)&1left(p=frac23right) \ hline 0left(p=frac13right) & 0 &1 \ hline 1left(p=frac23right) & 1 &0 \ hline end{array}$$



                            Now you can use the well known formulas to obtain $Var(|X-Y|)$




                            • $E(|X-Y|)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|cdot p(x,y)$


                            • $E(|X-Y|^2)=sumlimits_{x=0}^{1}sumlimits_{y=0}^{1} |x-y|^2cdot
                              p(x,y)$


                            • $Var(Z)=E(Z^2)-E^2(Z)$








                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 25 at 17:03









                            callculuscallculus

                            18.3k31427




                            18.3k31427






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087261%2ffind-the-standard-deviation-of-x%25e2%2588%2592y%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Mario Kart Wii

                                The Binding of Isaac: Rebirth/Afterbirth

                                What does “Dominus providebit” mean?