Limlit of $frac{x-xln(1+x)-ln(1+x)}{x^3+x^2}$ at $0$ without l'Hôpital or Taylor series
I have $f : x mapsto frac{ln(1+x)}{x}$ which derivative is $$frac{1}{x(1+x)}-frac{ln(1+x)}{x^2}$$
I want to find the limit as $x$ goes to $0$ of this derivative. I've tried simplifying the expression to $$frac{x - xln(1+x) - ln(1+x)}{x^3 + x^2}$$ but I'm still struggling. Also I can't use l'Hôpital or Taylor series. Any help would be appreciated, thanks in advance! (And sorry if I did anything wrong here)
logarithms limits-without-lhopital indeterminate-forms
New contributor
add a comment |
I have $f : x mapsto frac{ln(1+x)}{x}$ which derivative is $$frac{1}{x(1+x)}-frac{ln(1+x)}{x^2}$$
I want to find the limit as $x$ goes to $0$ of this derivative. I've tried simplifying the expression to $$frac{x - xln(1+x) - ln(1+x)}{x^3 + x^2}$$ but I'm still struggling. Also I can't use l'Hôpital or Taylor series. Any help would be appreciated, thanks in advance! (And sorry if I did anything wrong here)
logarithms limits-without-lhopital indeterminate-forms
New contributor
add a comment |
I have $f : x mapsto frac{ln(1+x)}{x}$ which derivative is $$frac{1}{x(1+x)}-frac{ln(1+x)}{x^2}$$
I want to find the limit as $x$ goes to $0$ of this derivative. I've tried simplifying the expression to $$frac{x - xln(1+x) - ln(1+x)}{x^3 + x^2}$$ but I'm still struggling. Also I can't use l'Hôpital or Taylor series. Any help would be appreciated, thanks in advance! (And sorry if I did anything wrong here)
logarithms limits-without-lhopital indeterminate-forms
New contributor
I have $f : x mapsto frac{ln(1+x)}{x}$ which derivative is $$frac{1}{x(1+x)}-frac{ln(1+x)}{x^2}$$
I want to find the limit as $x$ goes to $0$ of this derivative. I've tried simplifying the expression to $$frac{x - xln(1+x) - ln(1+x)}{x^3 + x^2}$$ but I'm still struggling. Also I can't use l'Hôpital or Taylor series. Any help would be appreciated, thanks in advance! (And sorry if I did anything wrong here)
logarithms limits-without-lhopital indeterminate-forms
logarithms limits-without-lhopital indeterminate-forms
New contributor
New contributor
edited yesterday
mrtaurho
4,01621133
4,01621133
New contributor
asked yesterday
Heryon
194
194
New contributor
New contributor
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
First, you can decompose the first term in your derivative as:
$frac{x}{1+x} = frac{1}{x}-frac{1}{1+x}$.
Second, you can expand the second term using Taylor series:
$frac{ln(1+x)}{x^2}$
$ = frac{1}{x^2} left( x - frac{x^2}{2} + frac{x^3}{3} - .. right)$
$ = frac{1}{x} - frac{1}{2} + frac{x}{3} - $
Putting it together, your derivative is:
$frac{1}{x}-frac{1}{1+x} - frac{1}{x} + frac{1}{2} - frac{x}{3} +...$
- The $1/x$ terms cancel out.
$lim_{x rightarrow 0} frac{1}{1+x} = 1$.
$lim_{x rightarrow 0}$ of all terms with $x$ or higher powers of $x$ in the numerator is 0.
So you are left with $-1 + frac{1}{2} = -frac{1}{2}$.
Clever, thanks. Any way to do this without Taylor series? (Just to know)
– Heryon
yesterday
add a comment |
Your original function $f(x)=frac{ln(1+x)}{x}$ can be written using the taylor series expansion of $ln(1+x)$ as follows:
$$ln(1+x)=sum_{k=1}^{infty}frac{(-1)^{k+1}x^{k}}{k}=x-frac{x^2}{2}+frac{x^3}{3}-...$$
$$thereforefrac{ln(1+x)}{x}=sum_{k=1}^{infty}frac{(-1)^{k+1}x^{k-1}}{k}=sum_{k=0}^{infty}frac{(-1)^{k}x^{k}}{k+1}=1-frac{x}{2}+frac{x^2}{3}-...$$
$$frac{d}{dx}Bigg(frac{ln(1+x)}{x}Bigg)=frac{d}{dx}bigg(1-frac{x}{2}+frac{x^2}{3}-...bigg)=-frac{1}{2}+frac{2x}{3}-frac{3x^2}{4}+...$$
So,
$$lim_{xto0}Bigg(frac{d}{dx}Bigg(frac{ln(1+x)}{x}Bigg)Bigg)=lim_{xto0}bigg(-frac{1}{2}+frac{2x}{3}-frac{3x^2}{4}+...bigg)=fbox{$-frac{1}{2}$}$$
New contributor
add a comment |
$frac {1}{x(x+1)} - frac {ln(x+1)}{x^2} = frac {d}{dx} frac {ln(x+1)}{x}$
At which point I am inclined to use a series
$frac {d}{dx} (1 - frac x2 + cdots)$
as $x$ goes to $0$ equals $-frac 12$
Without using a series, I have.
$frac {d}{dx} frac {ln(x+1)}{x}$ evaluated at $x = 0$
is $lim_limits{hto 0} frac{ ln(1+h) - 1}{h^2}$
Yes I can't use that too, edited the post, but thanks!
– Heryon
yesterday
add a comment |
Because $frac{x}{1+x}<ln(1+x)<x$
So when $ x rightarrow 0+, f(x) rightarrow 1$
When $xrightarrow0-$ is similar
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Heryon is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062245%2flimlit-of-fracx-x-ln1x-ln1xx3x2-at-0-without-lh%25c3%25b4pital-or-tay%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
First, you can decompose the first term in your derivative as:
$frac{x}{1+x} = frac{1}{x}-frac{1}{1+x}$.
Second, you can expand the second term using Taylor series:
$frac{ln(1+x)}{x^2}$
$ = frac{1}{x^2} left( x - frac{x^2}{2} + frac{x^3}{3} - .. right)$
$ = frac{1}{x} - frac{1}{2} + frac{x}{3} - $
Putting it together, your derivative is:
$frac{1}{x}-frac{1}{1+x} - frac{1}{x} + frac{1}{2} - frac{x}{3} +...$
- The $1/x$ terms cancel out.
$lim_{x rightarrow 0} frac{1}{1+x} = 1$.
$lim_{x rightarrow 0}$ of all terms with $x$ or higher powers of $x$ in the numerator is 0.
So you are left with $-1 + frac{1}{2} = -frac{1}{2}$.
Clever, thanks. Any way to do this without Taylor series? (Just to know)
– Heryon
yesterday
add a comment |
First, you can decompose the first term in your derivative as:
$frac{x}{1+x} = frac{1}{x}-frac{1}{1+x}$.
Second, you can expand the second term using Taylor series:
$frac{ln(1+x)}{x^2}$
$ = frac{1}{x^2} left( x - frac{x^2}{2} + frac{x^3}{3} - .. right)$
$ = frac{1}{x} - frac{1}{2} + frac{x}{3} - $
Putting it together, your derivative is:
$frac{1}{x}-frac{1}{1+x} - frac{1}{x} + frac{1}{2} - frac{x}{3} +...$
- The $1/x$ terms cancel out.
$lim_{x rightarrow 0} frac{1}{1+x} = 1$.
$lim_{x rightarrow 0}$ of all terms with $x$ or higher powers of $x$ in the numerator is 0.
So you are left with $-1 + frac{1}{2} = -frac{1}{2}$.
Clever, thanks. Any way to do this without Taylor series? (Just to know)
– Heryon
yesterday
add a comment |
First, you can decompose the first term in your derivative as:
$frac{x}{1+x} = frac{1}{x}-frac{1}{1+x}$.
Second, you can expand the second term using Taylor series:
$frac{ln(1+x)}{x^2}$
$ = frac{1}{x^2} left( x - frac{x^2}{2} + frac{x^3}{3} - .. right)$
$ = frac{1}{x} - frac{1}{2} + frac{x}{3} - $
Putting it together, your derivative is:
$frac{1}{x}-frac{1}{1+x} - frac{1}{x} + frac{1}{2} - frac{x}{3} +...$
- The $1/x$ terms cancel out.
$lim_{x rightarrow 0} frac{1}{1+x} = 1$.
$lim_{x rightarrow 0}$ of all terms with $x$ or higher powers of $x$ in the numerator is 0.
So you are left with $-1 + frac{1}{2} = -frac{1}{2}$.
First, you can decompose the first term in your derivative as:
$frac{x}{1+x} = frac{1}{x}-frac{1}{1+x}$.
Second, you can expand the second term using Taylor series:
$frac{ln(1+x)}{x^2}$
$ = frac{1}{x^2} left( x - frac{x^2}{2} + frac{x^3}{3} - .. right)$
$ = frac{1}{x} - frac{1}{2} + frac{x}{3} - $
Putting it together, your derivative is:
$frac{1}{x}-frac{1}{1+x} - frac{1}{x} + frac{1}{2} - frac{x}{3} +...$
- The $1/x$ terms cancel out.
$lim_{x rightarrow 0} frac{1}{1+x} = 1$.
$lim_{x rightarrow 0}$ of all terms with $x$ or higher powers of $x$ in the numerator is 0.
So you are left with $-1 + frac{1}{2} = -frac{1}{2}$.
answered yesterday
Aditya Dua
86418
86418
Clever, thanks. Any way to do this without Taylor series? (Just to know)
– Heryon
yesterday
add a comment |
Clever, thanks. Any way to do this without Taylor series? (Just to know)
– Heryon
yesterday
Clever, thanks. Any way to do this without Taylor series? (Just to know)
– Heryon
yesterday
Clever, thanks. Any way to do this without Taylor series? (Just to know)
– Heryon
yesterday
add a comment |
Your original function $f(x)=frac{ln(1+x)}{x}$ can be written using the taylor series expansion of $ln(1+x)$ as follows:
$$ln(1+x)=sum_{k=1}^{infty}frac{(-1)^{k+1}x^{k}}{k}=x-frac{x^2}{2}+frac{x^3}{3}-...$$
$$thereforefrac{ln(1+x)}{x}=sum_{k=1}^{infty}frac{(-1)^{k+1}x^{k-1}}{k}=sum_{k=0}^{infty}frac{(-1)^{k}x^{k}}{k+1}=1-frac{x}{2}+frac{x^2}{3}-...$$
$$frac{d}{dx}Bigg(frac{ln(1+x)}{x}Bigg)=frac{d}{dx}bigg(1-frac{x}{2}+frac{x^2}{3}-...bigg)=-frac{1}{2}+frac{2x}{3}-frac{3x^2}{4}+...$$
So,
$$lim_{xto0}Bigg(frac{d}{dx}Bigg(frac{ln(1+x)}{x}Bigg)Bigg)=lim_{xto0}bigg(-frac{1}{2}+frac{2x}{3}-frac{3x^2}{4}+...bigg)=fbox{$-frac{1}{2}$}$$
New contributor
add a comment |
Your original function $f(x)=frac{ln(1+x)}{x}$ can be written using the taylor series expansion of $ln(1+x)$ as follows:
$$ln(1+x)=sum_{k=1}^{infty}frac{(-1)^{k+1}x^{k}}{k}=x-frac{x^2}{2}+frac{x^3}{3}-...$$
$$thereforefrac{ln(1+x)}{x}=sum_{k=1}^{infty}frac{(-1)^{k+1}x^{k-1}}{k}=sum_{k=0}^{infty}frac{(-1)^{k}x^{k}}{k+1}=1-frac{x}{2}+frac{x^2}{3}-...$$
$$frac{d}{dx}Bigg(frac{ln(1+x)}{x}Bigg)=frac{d}{dx}bigg(1-frac{x}{2}+frac{x^2}{3}-...bigg)=-frac{1}{2}+frac{2x}{3}-frac{3x^2}{4}+...$$
So,
$$lim_{xto0}Bigg(frac{d}{dx}Bigg(frac{ln(1+x)}{x}Bigg)Bigg)=lim_{xto0}bigg(-frac{1}{2}+frac{2x}{3}-frac{3x^2}{4}+...bigg)=fbox{$-frac{1}{2}$}$$
New contributor
add a comment |
Your original function $f(x)=frac{ln(1+x)}{x}$ can be written using the taylor series expansion of $ln(1+x)$ as follows:
$$ln(1+x)=sum_{k=1}^{infty}frac{(-1)^{k+1}x^{k}}{k}=x-frac{x^2}{2}+frac{x^3}{3}-...$$
$$thereforefrac{ln(1+x)}{x}=sum_{k=1}^{infty}frac{(-1)^{k+1}x^{k-1}}{k}=sum_{k=0}^{infty}frac{(-1)^{k}x^{k}}{k+1}=1-frac{x}{2}+frac{x^2}{3}-...$$
$$frac{d}{dx}Bigg(frac{ln(1+x)}{x}Bigg)=frac{d}{dx}bigg(1-frac{x}{2}+frac{x^2}{3}-...bigg)=-frac{1}{2}+frac{2x}{3}-frac{3x^2}{4}+...$$
So,
$$lim_{xto0}Bigg(frac{d}{dx}Bigg(frac{ln(1+x)}{x}Bigg)Bigg)=lim_{xto0}bigg(-frac{1}{2}+frac{2x}{3}-frac{3x^2}{4}+...bigg)=fbox{$-frac{1}{2}$}$$
New contributor
Your original function $f(x)=frac{ln(1+x)}{x}$ can be written using the taylor series expansion of $ln(1+x)$ as follows:
$$ln(1+x)=sum_{k=1}^{infty}frac{(-1)^{k+1}x^{k}}{k}=x-frac{x^2}{2}+frac{x^3}{3}-...$$
$$thereforefrac{ln(1+x)}{x}=sum_{k=1}^{infty}frac{(-1)^{k+1}x^{k-1}}{k}=sum_{k=0}^{infty}frac{(-1)^{k}x^{k}}{k+1}=1-frac{x}{2}+frac{x^2}{3}-...$$
$$frac{d}{dx}Bigg(frac{ln(1+x)}{x}Bigg)=frac{d}{dx}bigg(1-frac{x}{2}+frac{x^2}{3}-...bigg)=-frac{1}{2}+frac{2x}{3}-frac{3x^2}{4}+...$$
So,
$$lim_{xto0}Bigg(frac{d}{dx}Bigg(frac{ln(1+x)}{x}Bigg)Bigg)=lim_{xto0}bigg(-frac{1}{2}+frac{2x}{3}-frac{3x^2}{4}+...bigg)=fbox{$-frac{1}{2}$}$$
New contributor
New contributor
answered yesterday
Peter Foreman
2056
2056
New contributor
New contributor
add a comment |
add a comment |
$frac {1}{x(x+1)} - frac {ln(x+1)}{x^2} = frac {d}{dx} frac {ln(x+1)}{x}$
At which point I am inclined to use a series
$frac {d}{dx} (1 - frac x2 + cdots)$
as $x$ goes to $0$ equals $-frac 12$
Without using a series, I have.
$frac {d}{dx} frac {ln(x+1)}{x}$ evaluated at $x = 0$
is $lim_limits{hto 0} frac{ ln(1+h) - 1}{h^2}$
Yes I can't use that too, edited the post, but thanks!
– Heryon
yesterday
add a comment |
$frac {1}{x(x+1)} - frac {ln(x+1)}{x^2} = frac {d}{dx} frac {ln(x+1)}{x}$
At which point I am inclined to use a series
$frac {d}{dx} (1 - frac x2 + cdots)$
as $x$ goes to $0$ equals $-frac 12$
Without using a series, I have.
$frac {d}{dx} frac {ln(x+1)}{x}$ evaluated at $x = 0$
is $lim_limits{hto 0} frac{ ln(1+h) - 1}{h^2}$
Yes I can't use that too, edited the post, but thanks!
– Heryon
yesterday
add a comment |
$frac {1}{x(x+1)} - frac {ln(x+1)}{x^2} = frac {d}{dx} frac {ln(x+1)}{x}$
At which point I am inclined to use a series
$frac {d}{dx} (1 - frac x2 + cdots)$
as $x$ goes to $0$ equals $-frac 12$
Without using a series, I have.
$frac {d}{dx} frac {ln(x+1)}{x}$ evaluated at $x = 0$
is $lim_limits{hto 0} frac{ ln(1+h) - 1}{h^2}$
$frac {1}{x(x+1)} - frac {ln(x+1)}{x^2} = frac {d}{dx} frac {ln(x+1)}{x}$
At which point I am inclined to use a series
$frac {d}{dx} (1 - frac x2 + cdots)$
as $x$ goes to $0$ equals $-frac 12$
Without using a series, I have.
$frac {d}{dx} frac {ln(x+1)}{x}$ evaluated at $x = 0$
is $lim_limits{hto 0} frac{ ln(1+h) - 1}{h^2}$
edited yesterday
answered yesterday
Doug M
44.2k31854
44.2k31854
Yes I can't use that too, edited the post, but thanks!
– Heryon
yesterday
add a comment |
Yes I can't use that too, edited the post, but thanks!
– Heryon
yesterday
Yes I can't use that too, edited the post, but thanks!
– Heryon
yesterday
Yes I can't use that too, edited the post, but thanks!
– Heryon
yesterday
add a comment |
Because $frac{x}{1+x}<ln(1+x)<x$
So when $ x rightarrow 0+, f(x) rightarrow 1$
When $xrightarrow0-$ is similar
add a comment |
Because $frac{x}{1+x}<ln(1+x)<x$
So when $ x rightarrow 0+, f(x) rightarrow 1$
When $xrightarrow0-$ is similar
add a comment |
Because $frac{x}{1+x}<ln(1+x)<x$
So when $ x rightarrow 0+, f(x) rightarrow 1$
When $xrightarrow0-$ is similar
Because $frac{x}{1+x}<ln(1+x)<x$
So when $ x rightarrow 0+, f(x) rightarrow 1$
When $xrightarrow0-$ is similar
answered yesterday
李子镔
314
314
add a comment |
add a comment |
Heryon is a new contributor. Be nice, and check out our Code of Conduct.
Heryon is a new contributor. Be nice, and check out our Code of Conduct.
Heryon is a new contributor. Be nice, and check out our Code of Conduct.
Heryon is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062245%2flimlit-of-fracx-x-ln1x-ln1xx3x2-at-0-without-lh%25c3%25b4pital-or-tay%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown