If $(κ_t)_{t≥0}$ is the transition semigroup of a continuous Markov process, is $t↦(κ_tf)(x)$...
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(mathcal F_t)_{tge0}$ be a filtration on $(Omega,mathcal A)$
$E$ be a metric space
$(X_t)_{tge0}$ be an $E$-valued right-continuous time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$
$kappa_t$ be a regular version of the conditional probability of $X_t$ given $X_0$, i.e. $kappa_t$ is a Markov kernel on $(E,mathcal B(E))$ with $$operatorname Pleft[X_{s+t}in Bmidmathcal F_sright]=operatorname Pleft[X_tin Bmid X_0right]=kappa_t(X_0,B);;;text{almost surely for all }Binmathcal B(E)tag1$$ for all $s,tge0$
$f:Etomathbb R$ be bounded and continuous
Are we able to show that $$[0,infty)ni tmapsto(kappa_t f)(x):=intkappa_t(x,{rm d}y)f(y)tag1$$ is continuous for all $xinmathbb R$?
Let's take a look: Let $(t_n)_{ninmathbb N}subseteq[0,infty)$ and $tge0$ with $t_nxrightarrow{ntoinfty}t$. For simplicity, assume $t=0$. By the dominated convergence theorem, $$operatorname Eleft[fleft(X_{t_n}right)mid X_0right]xrightarrow{ntoinfty}operatorname Eleft[fleft(X_0right)mid X_0right]=f(X_0);;;text{almost surely}tag2$$ and hence $$operatorname Eleft[fleft(X_{t_n}right)mid X_0=;cdot;right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)mid X_0=;cdot;right]=f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag3$$ By $(1)$, $$operatorname Eleft[fleft(X_{t_n}right)mid X_0=;cdot;right]=kappa_{t_n}f;;;text{for all }ninmathbb N;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag4$$ Thus, $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag4$$
The problem with $(4)$ is the dependence of the null set on $(t_n)_{ninmathbb N}$.
However, $left|kappa_{t_n}right|leleft|fright|_infty$ for all $ninmathbb N$ and hence another application of the dominated convergence theorem yields $$operatorname Eleft[left(kappa_{t_n}fright)(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag5.$$
If we fix an $xin E$ and assume $operatorname Pcirc:X_0^{-1}=delta_x$, the continuity of $(1)$ is obvious from $(5)$.
Now, Mars Plastic wrote in his answer that the assumption $operatorname Pcirc:X_0^{-1}=delta_x$ is no restriction.
Why?
I have some crazy idea: Assume $E$ is separable. Let $D([0,infty),E)$ denote the space of càdlàg functions $[0,infty)to E$ equipped with the Skorohod topology and $$pi_t:D([0,infty),E)to E;,;;;xmapsto x(t)$$ for $tge0$. By separability, $$mathcal Bleft(D([0,infty),E)right)=sigma(pi_t:tge0)tag6.$$ Now, assume that there is a Markov kernel $kappa$ with source $(E,mathcal E)$ and target $$(tilde Omega,tilde{mathcal A}):=left(D([0,infty),E),mathcal Bleft(D([0,infty),E)right)right)$$ with $$kappa(x,;cdot;)circleft(pi_{t_0},ldots,pi_{t_n}right)^{-1}=delta_xotimesbigotimes_{i=1}^nkappa_{t_i-t_{i-1}};;;text{for all }ninmathbb Ntext{ and }0=t_0<cdots<t_ntag7$$ for all $xin E$. Then, if $mu$ is any probability measureon $(E,mathcal E)$ and $$tilde{operatorname P}[tilde A]:=(mukappa)(tilde A)=intmu({rm d}x)kappa(x,tilde A);;;text{for }tilde Aintilde{mathcal A},$$ then it's easy to see that $(pi_t)_{tge0}$ is a càdlàg Markov process on $(tildeOmega,tilde{mathcal A},tilde{operatorname P})$ with transition semigroup $(kappa_t)_{tge0}$ and initial distribution $operatorname Pcirc:pi_0^{-1}=mu$.
Clearly, we could choose $mu=delta_x$ for some fixed $xin E$ and immediately obtain the continuity of $(1)$ by the same argumentation as before.
First of all, I have no idea if we can prove the existence of $kappa$. As you may guess, my idea was inspired by the usual existence proof of a Markov process with a given transition semigroup and initial distribution. Therein, $E$ is assumed to be a Polish space, $pi_t$ is replaced by $E^{[0,:infty)}ni xmapsto x(t)$ and $(tildeOmega,tilde{mathcal A})$ is replaced by $left(E^{[0,:infty)},mathcal E^{otimes[0,:infty)}right)$. The definition of $tilde{operatorname P}$ is the same.
So, if this is the correct approach, the concrete Markov process $(X_t)_{tge0}$ in the question is of no use. All we need is the transition semigroup $(kappa_t)_{tge0}$ satisfying the usual consistency conditions (Chapman-Kolmogorov equations) and then hope that $E$ is "nice enough" to admit the existence of $kappa$.
So, the question is: Is this the correct approach? And if so: When is $E$ is "nice enough"?
probability-theory measure-theory stochastic-processes conditional-expectation markov-process
$endgroup$
add a comment |
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(mathcal F_t)_{tge0}$ be a filtration on $(Omega,mathcal A)$
$E$ be a metric space
$(X_t)_{tge0}$ be an $E$-valued right-continuous time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$
$kappa_t$ be a regular version of the conditional probability of $X_t$ given $X_0$, i.e. $kappa_t$ is a Markov kernel on $(E,mathcal B(E))$ with $$operatorname Pleft[X_{s+t}in Bmidmathcal F_sright]=operatorname Pleft[X_tin Bmid X_0right]=kappa_t(X_0,B);;;text{almost surely for all }Binmathcal B(E)tag1$$ for all $s,tge0$
$f:Etomathbb R$ be bounded and continuous
Are we able to show that $$[0,infty)ni tmapsto(kappa_t f)(x):=intkappa_t(x,{rm d}y)f(y)tag1$$ is continuous for all $xinmathbb R$?
Let's take a look: Let $(t_n)_{ninmathbb N}subseteq[0,infty)$ and $tge0$ with $t_nxrightarrow{ntoinfty}t$. For simplicity, assume $t=0$. By the dominated convergence theorem, $$operatorname Eleft[fleft(X_{t_n}right)mid X_0right]xrightarrow{ntoinfty}operatorname Eleft[fleft(X_0right)mid X_0right]=f(X_0);;;text{almost surely}tag2$$ and hence $$operatorname Eleft[fleft(X_{t_n}right)mid X_0=;cdot;right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)mid X_0=;cdot;right]=f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag3$$ By $(1)$, $$operatorname Eleft[fleft(X_{t_n}right)mid X_0=;cdot;right]=kappa_{t_n}f;;;text{for all }ninmathbb N;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag4$$ Thus, $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag4$$
The problem with $(4)$ is the dependence of the null set on $(t_n)_{ninmathbb N}$.
However, $left|kappa_{t_n}right|leleft|fright|_infty$ for all $ninmathbb N$ and hence another application of the dominated convergence theorem yields $$operatorname Eleft[left(kappa_{t_n}fright)(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag5.$$
If we fix an $xin E$ and assume $operatorname Pcirc:X_0^{-1}=delta_x$, the continuity of $(1)$ is obvious from $(5)$.
Now, Mars Plastic wrote in his answer that the assumption $operatorname Pcirc:X_0^{-1}=delta_x$ is no restriction.
Why?
I have some crazy idea: Assume $E$ is separable. Let $D([0,infty),E)$ denote the space of càdlàg functions $[0,infty)to E$ equipped with the Skorohod topology and $$pi_t:D([0,infty),E)to E;,;;;xmapsto x(t)$$ for $tge0$. By separability, $$mathcal Bleft(D([0,infty),E)right)=sigma(pi_t:tge0)tag6.$$ Now, assume that there is a Markov kernel $kappa$ with source $(E,mathcal E)$ and target $$(tilde Omega,tilde{mathcal A}):=left(D([0,infty),E),mathcal Bleft(D([0,infty),E)right)right)$$ with $$kappa(x,;cdot;)circleft(pi_{t_0},ldots,pi_{t_n}right)^{-1}=delta_xotimesbigotimes_{i=1}^nkappa_{t_i-t_{i-1}};;;text{for all }ninmathbb Ntext{ and }0=t_0<cdots<t_ntag7$$ for all $xin E$. Then, if $mu$ is any probability measureon $(E,mathcal E)$ and $$tilde{operatorname P}[tilde A]:=(mukappa)(tilde A)=intmu({rm d}x)kappa(x,tilde A);;;text{for }tilde Aintilde{mathcal A},$$ then it's easy to see that $(pi_t)_{tge0}$ is a càdlàg Markov process on $(tildeOmega,tilde{mathcal A},tilde{operatorname P})$ with transition semigroup $(kappa_t)_{tge0}$ and initial distribution $operatorname Pcirc:pi_0^{-1}=mu$.
Clearly, we could choose $mu=delta_x$ for some fixed $xin E$ and immediately obtain the continuity of $(1)$ by the same argumentation as before.
First of all, I have no idea if we can prove the existence of $kappa$. As you may guess, my idea was inspired by the usual existence proof of a Markov process with a given transition semigroup and initial distribution. Therein, $E$ is assumed to be a Polish space, $pi_t$ is replaced by $E^{[0,:infty)}ni xmapsto x(t)$ and $(tildeOmega,tilde{mathcal A})$ is replaced by $left(E^{[0,:infty)},mathcal E^{otimes[0,:infty)}right)$. The definition of $tilde{operatorname P}$ is the same.
So, if this is the correct approach, the concrete Markov process $(X_t)_{tge0}$ in the question is of no use. All we need is the transition semigroup $(kappa_t)_{tge0}$ satisfying the usual consistency conditions (Chapman-Kolmogorov equations) and then hope that $E$ is "nice enough" to admit the existence of $kappa$.
So, the question is: Is this the correct approach? And if so: When is $E$ is "nice enough"?
probability-theory measure-theory stochastic-processes conditional-expectation markov-process
$endgroup$
add a comment |
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(mathcal F_t)_{tge0}$ be a filtration on $(Omega,mathcal A)$
$E$ be a metric space
$(X_t)_{tge0}$ be an $E$-valued right-continuous time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$
$kappa_t$ be a regular version of the conditional probability of $X_t$ given $X_0$, i.e. $kappa_t$ is a Markov kernel on $(E,mathcal B(E))$ with $$operatorname Pleft[X_{s+t}in Bmidmathcal F_sright]=operatorname Pleft[X_tin Bmid X_0right]=kappa_t(X_0,B);;;text{almost surely for all }Binmathcal B(E)tag1$$ for all $s,tge0$
$f:Etomathbb R$ be bounded and continuous
Are we able to show that $$[0,infty)ni tmapsto(kappa_t f)(x):=intkappa_t(x,{rm d}y)f(y)tag1$$ is continuous for all $xinmathbb R$?
Let's take a look: Let $(t_n)_{ninmathbb N}subseteq[0,infty)$ and $tge0$ with $t_nxrightarrow{ntoinfty}t$. For simplicity, assume $t=0$. By the dominated convergence theorem, $$operatorname Eleft[fleft(X_{t_n}right)mid X_0right]xrightarrow{ntoinfty}operatorname Eleft[fleft(X_0right)mid X_0right]=f(X_0);;;text{almost surely}tag2$$ and hence $$operatorname Eleft[fleft(X_{t_n}right)mid X_0=;cdot;right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)mid X_0=;cdot;right]=f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag3$$ By $(1)$, $$operatorname Eleft[fleft(X_{t_n}right)mid X_0=;cdot;right]=kappa_{t_n}f;;;text{for all }ninmathbb N;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag4$$ Thus, $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag4$$
The problem with $(4)$ is the dependence of the null set on $(t_n)_{ninmathbb N}$.
However, $left|kappa_{t_n}right|leleft|fright|_infty$ for all $ninmathbb N$ and hence another application of the dominated convergence theorem yields $$operatorname Eleft[left(kappa_{t_n}fright)(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag5.$$
If we fix an $xin E$ and assume $operatorname Pcirc:X_0^{-1}=delta_x$, the continuity of $(1)$ is obvious from $(5)$.
Now, Mars Plastic wrote in his answer that the assumption $operatorname Pcirc:X_0^{-1}=delta_x$ is no restriction.
Why?
I have some crazy idea: Assume $E$ is separable. Let $D([0,infty),E)$ denote the space of càdlàg functions $[0,infty)to E$ equipped with the Skorohod topology and $$pi_t:D([0,infty),E)to E;,;;;xmapsto x(t)$$ for $tge0$. By separability, $$mathcal Bleft(D([0,infty),E)right)=sigma(pi_t:tge0)tag6.$$ Now, assume that there is a Markov kernel $kappa$ with source $(E,mathcal E)$ and target $$(tilde Omega,tilde{mathcal A}):=left(D([0,infty),E),mathcal Bleft(D([0,infty),E)right)right)$$ with $$kappa(x,;cdot;)circleft(pi_{t_0},ldots,pi_{t_n}right)^{-1}=delta_xotimesbigotimes_{i=1}^nkappa_{t_i-t_{i-1}};;;text{for all }ninmathbb Ntext{ and }0=t_0<cdots<t_ntag7$$ for all $xin E$. Then, if $mu$ is any probability measureon $(E,mathcal E)$ and $$tilde{operatorname P}[tilde A]:=(mukappa)(tilde A)=intmu({rm d}x)kappa(x,tilde A);;;text{for }tilde Aintilde{mathcal A},$$ then it's easy to see that $(pi_t)_{tge0}$ is a càdlàg Markov process on $(tildeOmega,tilde{mathcal A},tilde{operatorname P})$ with transition semigroup $(kappa_t)_{tge0}$ and initial distribution $operatorname Pcirc:pi_0^{-1}=mu$.
Clearly, we could choose $mu=delta_x$ for some fixed $xin E$ and immediately obtain the continuity of $(1)$ by the same argumentation as before.
First of all, I have no idea if we can prove the existence of $kappa$. As you may guess, my idea was inspired by the usual existence proof of a Markov process with a given transition semigroup and initial distribution. Therein, $E$ is assumed to be a Polish space, $pi_t$ is replaced by $E^{[0,:infty)}ni xmapsto x(t)$ and $(tildeOmega,tilde{mathcal A})$ is replaced by $left(E^{[0,:infty)},mathcal E^{otimes[0,:infty)}right)$. The definition of $tilde{operatorname P}$ is the same.
So, if this is the correct approach, the concrete Markov process $(X_t)_{tge0}$ in the question is of no use. All we need is the transition semigroup $(kappa_t)_{tge0}$ satisfying the usual consistency conditions (Chapman-Kolmogorov equations) and then hope that $E$ is "nice enough" to admit the existence of $kappa$.
So, the question is: Is this the correct approach? And if so: When is $E$ is "nice enough"?
probability-theory measure-theory stochastic-processes conditional-expectation markov-process
$endgroup$
Let
$(Omega,mathcal A,operatorname P)$ be a probability space
$(mathcal F_t)_{tge0}$ be a filtration on $(Omega,mathcal A)$
$E$ be a metric space
$(X_t)_{tge0}$ be an $E$-valued right-continuous time-homogeneous Markov process on $(Omega,mathcal A,operatorname P)$
$kappa_t$ be a regular version of the conditional probability of $X_t$ given $X_0$, i.e. $kappa_t$ is a Markov kernel on $(E,mathcal B(E))$ with $$operatorname Pleft[X_{s+t}in Bmidmathcal F_sright]=operatorname Pleft[X_tin Bmid X_0right]=kappa_t(X_0,B);;;text{almost surely for all }Binmathcal B(E)tag1$$ for all $s,tge0$
$f:Etomathbb R$ be bounded and continuous
Are we able to show that $$[0,infty)ni tmapsto(kappa_t f)(x):=intkappa_t(x,{rm d}y)f(y)tag1$$ is continuous for all $xinmathbb R$?
Let's take a look: Let $(t_n)_{ninmathbb N}subseteq[0,infty)$ and $tge0$ with $t_nxrightarrow{ntoinfty}t$. For simplicity, assume $t=0$. By the dominated convergence theorem, $$operatorname Eleft[fleft(X_{t_n}right)mid X_0right]xrightarrow{ntoinfty}operatorname Eleft[fleft(X_0right)mid X_0right]=f(X_0);;;text{almost surely}tag2$$ and hence $$operatorname Eleft[fleft(X_{t_n}right)mid X_0=;cdot;right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)mid X_0=;cdot;right]=f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag3$$ By $(1)$, $$operatorname Eleft[fleft(X_{t_n}right)mid X_0=;cdot;right]=kappa_{t_n}f;;;text{for all }ninmathbb N;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag4$$ Thus, $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag4$$
The problem with $(4)$ is the dependence of the null set on $(t_n)_{ninmathbb N}$.
However, $left|kappa_{t_n}right|leleft|fright|_infty$ for all $ninmathbb N$ and hence another application of the dominated convergence theorem yields $$operatorname Eleft[left(kappa_{t_n}fright)(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag5.$$
If we fix an $xin E$ and assume $operatorname Pcirc:X_0^{-1}=delta_x$, the continuity of $(1)$ is obvious from $(5)$.
Now, Mars Plastic wrote in his answer that the assumption $operatorname Pcirc:X_0^{-1}=delta_x$ is no restriction.
Why?
I have some crazy idea: Assume $E$ is separable. Let $D([0,infty),E)$ denote the space of càdlàg functions $[0,infty)to E$ equipped with the Skorohod topology and $$pi_t:D([0,infty),E)to E;,;;;xmapsto x(t)$$ for $tge0$. By separability, $$mathcal Bleft(D([0,infty),E)right)=sigma(pi_t:tge0)tag6.$$ Now, assume that there is a Markov kernel $kappa$ with source $(E,mathcal E)$ and target $$(tilde Omega,tilde{mathcal A}):=left(D([0,infty),E),mathcal Bleft(D([0,infty),E)right)right)$$ with $$kappa(x,;cdot;)circleft(pi_{t_0},ldots,pi_{t_n}right)^{-1}=delta_xotimesbigotimes_{i=1}^nkappa_{t_i-t_{i-1}};;;text{for all }ninmathbb Ntext{ and }0=t_0<cdots<t_ntag7$$ for all $xin E$. Then, if $mu$ is any probability measureon $(E,mathcal E)$ and $$tilde{operatorname P}[tilde A]:=(mukappa)(tilde A)=intmu({rm d}x)kappa(x,tilde A);;;text{for }tilde Aintilde{mathcal A},$$ then it's easy to see that $(pi_t)_{tge0}$ is a càdlàg Markov process on $(tildeOmega,tilde{mathcal A},tilde{operatorname P})$ with transition semigroup $(kappa_t)_{tge0}$ and initial distribution $operatorname Pcirc:pi_0^{-1}=mu$.
Clearly, we could choose $mu=delta_x$ for some fixed $xin E$ and immediately obtain the continuity of $(1)$ by the same argumentation as before.
First of all, I have no idea if we can prove the existence of $kappa$. As you may guess, my idea was inspired by the usual existence proof of a Markov process with a given transition semigroup and initial distribution. Therein, $E$ is assumed to be a Polish space, $pi_t$ is replaced by $E^{[0,:infty)}ni xmapsto x(t)$ and $(tildeOmega,tilde{mathcal A})$ is replaced by $left(E^{[0,:infty)},mathcal E^{otimes[0,:infty)}right)$. The definition of $tilde{operatorname P}$ is the same.
So, if this is the correct approach, the concrete Markov process $(X_t)_{tge0}$ in the question is of no use. All we need is the transition semigroup $(kappa_t)_{tge0}$ satisfying the usual consistency conditions (Chapman-Kolmogorov equations) and then hope that $E$ is "nice enough" to admit the existence of $kappa$.
So, the question is: Is this the correct approach? And if so: When is $E$ is "nice enough"?
probability-theory measure-theory stochastic-processes conditional-expectation markov-process
probability-theory measure-theory stochastic-processes conditional-expectation markov-process
edited Jan 23 at 0:04
0xbadf00d
asked Jan 21 at 13:04
0xbadf00d0xbadf00d
1,97541531
1,97541531
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your presentation is slightly bulky, but the general argument is correct. Note that you can fix a point $xin mathbb R$ and that it suffices to consider $Pcirc X_0^{-1}=delta_{x}$. Then your reasoning yields that for any $(t_n)subsetmathbb [0,infty)$ converging to $tin[0,infty)$ we have
begin{equation}
(kappa_{t_n}f)(x)=E[f(X_{t_n})|X_0=x] to E[f(X_t)|X_0=x]=(kappa_tf)(x), quad ntoinfty,
end{equation}
and that's all you need. There are no null sets which depend on anything that bothers us.
PS: Since you are in a time-homogeneous setting, it is indeed irrelevant if you consider $t=0$ or any other $tin [0,infty)$.
$endgroup$
$begingroup$
Why can we assume $operatorname Pcirc X_0^{-1}=delta_x$?
$endgroup$
– 0xbadf00d
Jan 21 at 15:51
$begingroup$
Assume $t=0$. In general, it's clear to me that $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag5$$ However, the null set in $(5)$ should depend on $(t_n)_{ninmathbb N}$. Applying the bounded convergence theorem yields $$operatorname Eleft[kappa_{t_n}f(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag6$$ and hence the claim is clear to me, if $operatorname Pcirc:X_0^{-1}=delta_x$ for a fixed $xin E$. But how does the general case follow?
$endgroup$
– 0xbadf00d
Jan 22 at 13:07
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081858%2fif-%25ce%25ba-t-t%25e2%2589%25a50-is-the-transition-semigroup-of-a-continuous-markov-process-is%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your presentation is slightly bulky, but the general argument is correct. Note that you can fix a point $xin mathbb R$ and that it suffices to consider $Pcirc X_0^{-1}=delta_{x}$. Then your reasoning yields that for any $(t_n)subsetmathbb [0,infty)$ converging to $tin[0,infty)$ we have
begin{equation}
(kappa_{t_n}f)(x)=E[f(X_{t_n})|X_0=x] to E[f(X_t)|X_0=x]=(kappa_tf)(x), quad ntoinfty,
end{equation}
and that's all you need. There are no null sets which depend on anything that bothers us.
PS: Since you are in a time-homogeneous setting, it is indeed irrelevant if you consider $t=0$ or any other $tin [0,infty)$.
$endgroup$
$begingroup$
Why can we assume $operatorname Pcirc X_0^{-1}=delta_x$?
$endgroup$
– 0xbadf00d
Jan 21 at 15:51
$begingroup$
Assume $t=0$. In general, it's clear to me that $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag5$$ However, the null set in $(5)$ should depend on $(t_n)_{ninmathbb N}$. Applying the bounded convergence theorem yields $$operatorname Eleft[kappa_{t_n}f(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag6$$ and hence the claim is clear to me, if $operatorname Pcirc:X_0^{-1}=delta_x$ for a fixed $xin E$. But how does the general case follow?
$endgroup$
– 0xbadf00d
Jan 22 at 13:07
add a comment |
$begingroup$
Your presentation is slightly bulky, but the general argument is correct. Note that you can fix a point $xin mathbb R$ and that it suffices to consider $Pcirc X_0^{-1}=delta_{x}$. Then your reasoning yields that for any $(t_n)subsetmathbb [0,infty)$ converging to $tin[0,infty)$ we have
begin{equation}
(kappa_{t_n}f)(x)=E[f(X_{t_n})|X_0=x] to E[f(X_t)|X_0=x]=(kappa_tf)(x), quad ntoinfty,
end{equation}
and that's all you need. There are no null sets which depend on anything that bothers us.
PS: Since you are in a time-homogeneous setting, it is indeed irrelevant if you consider $t=0$ or any other $tin [0,infty)$.
$endgroup$
$begingroup$
Why can we assume $operatorname Pcirc X_0^{-1}=delta_x$?
$endgroup$
– 0xbadf00d
Jan 21 at 15:51
$begingroup$
Assume $t=0$. In general, it's clear to me that $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag5$$ However, the null set in $(5)$ should depend on $(t_n)_{ninmathbb N}$. Applying the bounded convergence theorem yields $$operatorname Eleft[kappa_{t_n}f(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag6$$ and hence the claim is clear to me, if $operatorname Pcirc:X_0^{-1}=delta_x$ for a fixed $xin E$. But how does the general case follow?
$endgroup$
– 0xbadf00d
Jan 22 at 13:07
add a comment |
$begingroup$
Your presentation is slightly bulky, but the general argument is correct. Note that you can fix a point $xin mathbb R$ and that it suffices to consider $Pcirc X_0^{-1}=delta_{x}$. Then your reasoning yields that for any $(t_n)subsetmathbb [0,infty)$ converging to $tin[0,infty)$ we have
begin{equation}
(kappa_{t_n}f)(x)=E[f(X_{t_n})|X_0=x] to E[f(X_t)|X_0=x]=(kappa_tf)(x), quad ntoinfty,
end{equation}
and that's all you need. There are no null sets which depend on anything that bothers us.
PS: Since you are in a time-homogeneous setting, it is indeed irrelevant if you consider $t=0$ or any other $tin [0,infty)$.
$endgroup$
Your presentation is slightly bulky, but the general argument is correct. Note that you can fix a point $xin mathbb R$ and that it suffices to consider $Pcirc X_0^{-1}=delta_{x}$. Then your reasoning yields that for any $(t_n)subsetmathbb [0,infty)$ converging to $tin[0,infty)$ we have
begin{equation}
(kappa_{t_n}f)(x)=E[f(X_{t_n})|X_0=x] to E[f(X_t)|X_0=x]=(kappa_tf)(x), quad ntoinfty,
end{equation}
and that's all you need. There are no null sets which depend on anything that bothers us.
PS: Since you are in a time-homogeneous setting, it is indeed irrelevant if you consider $t=0$ or any other $tin [0,infty)$.
answered Jan 21 at 14:51
Mars PlasticMars Plastic
64118
64118
$begingroup$
Why can we assume $operatorname Pcirc X_0^{-1}=delta_x$?
$endgroup$
– 0xbadf00d
Jan 21 at 15:51
$begingroup$
Assume $t=0$. In general, it's clear to me that $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag5$$ However, the null set in $(5)$ should depend on $(t_n)_{ninmathbb N}$. Applying the bounded convergence theorem yields $$operatorname Eleft[kappa_{t_n}f(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag6$$ and hence the claim is clear to me, if $operatorname Pcirc:X_0^{-1}=delta_x$ for a fixed $xin E$. But how does the general case follow?
$endgroup$
– 0xbadf00d
Jan 22 at 13:07
add a comment |
$begingroup$
Why can we assume $operatorname Pcirc X_0^{-1}=delta_x$?
$endgroup$
– 0xbadf00d
Jan 21 at 15:51
$begingroup$
Assume $t=0$. In general, it's clear to me that $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag5$$ However, the null set in $(5)$ should depend on $(t_n)_{ninmathbb N}$. Applying the bounded convergence theorem yields $$operatorname Eleft[kappa_{t_n}f(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag6$$ and hence the claim is clear to me, if $operatorname Pcirc:X_0^{-1}=delta_x$ for a fixed $xin E$. But how does the general case follow?
$endgroup$
– 0xbadf00d
Jan 22 at 13:07
$begingroup$
Why can we assume $operatorname Pcirc X_0^{-1}=delta_x$?
$endgroup$
– 0xbadf00d
Jan 21 at 15:51
$begingroup$
Why can we assume $operatorname Pcirc X_0^{-1}=delta_x$?
$endgroup$
– 0xbadf00d
Jan 21 at 15:51
$begingroup$
Assume $t=0$. In general, it's clear to me that $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag5$$ However, the null set in $(5)$ should depend on $(t_n)_{ninmathbb N}$. Applying the bounded convergence theorem yields $$operatorname Eleft[kappa_{t_n}f(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag6$$ and hence the claim is clear to me, if $operatorname Pcirc:X_0^{-1}=delta_x$ for a fixed $xin E$. But how does the general case follow?
$endgroup$
– 0xbadf00d
Jan 22 at 13:07
$begingroup$
Assume $t=0$. In general, it's clear to me that $$kappa_{t_n}fxrightarrow{ntoinfty}f;;;operatorname Pcirc:X_0^{-1}text{-almost surely}.tag5$$ However, the null set in $(5)$ should depend on $(t_n)_{ninmathbb N}$. Applying the bounded convergence theorem yields $$operatorname Eleft[kappa_{t_n}f(X_0)right]xrightarrow{ntoinfty}operatorname Eleft[f(X_0)right]tag6$$ and hence the claim is clear to me, if $operatorname Pcirc:X_0^{-1}=delta_x$ for a fixed $xin E$. But how does the general case follow?
$endgroup$
– 0xbadf00d
Jan 22 at 13:07
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081858%2fif-%25ce%25ba-t-t%25e2%2589%25a50-is-the-transition-semigroup-of-a-continuous-markov-process-is%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown