Expectation and the equal in distribution
$begingroup$
Is the following statement true?
If $X$ and $Y$ are 2 random variables and $text{ }$$f$ is any bounded function then $mathbb{E}(f(X))=mathbb{E}(f(Y))$ if and only if $X$ and $Y$ have equal distribution?
Are there some counterexamples of this statement?
real-analysis probability probability-theory
$endgroup$
add a comment |
$begingroup$
Is the following statement true?
If $X$ and $Y$ are 2 random variables and $text{ }$$f$ is any bounded function then $mathbb{E}(f(X))=mathbb{E}(f(Y))$ if and only if $X$ and $Y$ have equal distribution?
Are there some counterexamples of this statement?
real-analysis probability probability-theory
$endgroup$
add a comment |
$begingroup$
Is the following statement true?
If $X$ and $Y$ are 2 random variables and $text{ }$$f$ is any bounded function then $mathbb{E}(f(X))=mathbb{E}(f(Y))$ if and only if $X$ and $Y$ have equal distribution?
Are there some counterexamples of this statement?
real-analysis probability probability-theory
$endgroup$
Is the following statement true?
If $X$ and $Y$ are 2 random variables and $text{ }$$f$ is any bounded function then $mathbb{E}(f(X))=mathbb{E}(f(Y))$ if and only if $X$ and $Y$ have equal distribution?
Are there some counterexamples of this statement?
real-analysis probability probability-theory
real-analysis probability probability-theory
asked Jan 20 at 1:08
PTTS_guyPTTS_guy
134
134
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $P_X=P_Y$, then clearly the expectations are equal. For the opposite direction, let $f(x):=1_{A}(x)$, where $Ain mathcal{B}(mathbb{R})$. Then
$$
P_X(A)=mathsf{E}f(X)=mathsf{E}f(Y)=P_Y(A).
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080045%2fexpectation-and-the-equal-in-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $P_X=P_Y$, then clearly the expectations are equal. For the opposite direction, let $f(x):=1_{A}(x)$, where $Ain mathcal{B}(mathbb{R})$. Then
$$
P_X(A)=mathsf{E}f(X)=mathsf{E}f(Y)=P_Y(A).
$$
$endgroup$
add a comment |
$begingroup$
If $P_X=P_Y$, then clearly the expectations are equal. For the opposite direction, let $f(x):=1_{A}(x)$, where $Ain mathcal{B}(mathbb{R})$. Then
$$
P_X(A)=mathsf{E}f(X)=mathsf{E}f(Y)=P_Y(A).
$$
$endgroup$
add a comment |
$begingroup$
If $P_X=P_Y$, then clearly the expectations are equal. For the opposite direction, let $f(x):=1_{A}(x)$, where $Ain mathcal{B}(mathbb{R})$. Then
$$
P_X(A)=mathsf{E}f(X)=mathsf{E}f(Y)=P_Y(A).
$$
$endgroup$
If $P_X=P_Y$, then clearly the expectations are equal. For the opposite direction, let $f(x):=1_{A}(x)$, where $Ain mathcal{B}(mathbb{R})$. Then
$$
P_X(A)=mathsf{E}f(X)=mathsf{E}f(Y)=P_Y(A).
$$
answered Jan 20 at 1:26
d.k.o.d.k.o.
9,553628
9,553628
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080045%2fexpectation-and-the-equal-in-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown