descriptions of groups of order $45$












1












$begingroup$


Describe the structure of groups of order $45$
Let $|G|=45$



If $G$ has an element of order $45$
$G=<x|x^{45}=1>$



If $G$ doesn’t have an element of order $45$
$P_9$: $9$-Sylow group
$P_5$: $5$-Sylow group
$P_9 triangleleft G$, $P_5 triangleleft G$, $P_9 cap P_5={1}$

Hence $P_9×P_5$ (direct)
$G=P_9×P_5$ (I’m not sure about this)
$P_9=<x,y| x^3=y^3=1, xy=yx>$
$P_5=<x| x^5=1>$



This is what I’ve got.

I can’t describe the structure of $P_9×P_5$

I want to describe it like $G=<...>$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Describe the structure of groups of order $45$
    Let $|G|=45$



    If $G$ has an element of order $45$
    $G=<x|x^{45}=1>$



    If $G$ doesn’t have an element of order $45$
    $P_9$: $9$-Sylow group
    $P_5$: $5$-Sylow group
    $P_9 triangleleft G$, $P_5 triangleleft G$, $P_9 cap P_5={1}$

    Hence $P_9×P_5$ (direct)
    $G=P_9×P_5$ (I’m not sure about this)
    $P_9=<x,y| x^3=y^3=1, xy=yx>$
    $P_5=<x| x^5=1>$



    This is what I’ve got.

    I can’t describe the structure of $P_9×P_5$

    I want to describe it like $G=<...>$










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Describe the structure of groups of order $45$
      Let $|G|=45$



      If $G$ has an element of order $45$
      $G=<x|x^{45}=1>$



      If $G$ doesn’t have an element of order $45$
      $P_9$: $9$-Sylow group
      $P_5$: $5$-Sylow group
      $P_9 triangleleft G$, $P_5 triangleleft G$, $P_9 cap P_5={1}$

      Hence $P_9×P_5$ (direct)
      $G=P_9×P_5$ (I’m not sure about this)
      $P_9=<x,y| x^3=y^3=1, xy=yx>$
      $P_5=<x| x^5=1>$



      This is what I’ve got.

      I can’t describe the structure of $P_9×P_5$

      I want to describe it like $G=<...>$










      share|cite|improve this question











      $endgroup$




      Describe the structure of groups of order $45$
      Let $|G|=45$



      If $G$ has an element of order $45$
      $G=<x|x^{45}=1>$



      If $G$ doesn’t have an element of order $45$
      $P_9$: $9$-Sylow group
      $P_5$: $5$-Sylow group
      $P_9 triangleleft G$, $P_5 triangleleft G$, $P_9 cap P_5={1}$

      Hence $P_9×P_5$ (direct)
      $G=P_9×P_5$ (I’m not sure about this)
      $P_9=<x,y| x^3=y^3=1, xy=yx>$
      $P_5=<x| x^5=1>$



      This is what I’ve got.

      I can’t describe the structure of $P_9×P_5$

      I want to describe it like $G=<...>$







      group-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 20 at 1:10









      user289143

      903313




      903313










      asked Jan 20 at 0:22









      sakisaki

      337




      337






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Your argument is fine. In a group of order $45$, the Sylow $3$-subgroup and the Sylow $5$-subgroup are necessarily normal. Hence the group is the direct product of these subgroups.



          For a group of order $9$, you have two possibilities :



          Either $C_9 = langle xmid x^9=1rangle$ or $C_3times C_3=langle x,ymid x^3=y^3=[x,y]=1rangle$.



          There is only one group of order $5$, namely $C_5=langle xmid x^5=1rangle$.



          Hence, there are two groups of order $45$, namely $C_9times C_5=C_{45}=langle xmid x^{45}=1rangle$ or $C_3times C_3times C_5=langle x,y,zmid x^3=y^3=z^5=[x,y]=[x,z]=[y,z]=1rangle$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you very much! And both of these groups are abelian, right?
            $endgroup$
            – saki
            Jan 20 at 1:20










          • $begingroup$
            Yes, they are both abelian.
            $endgroup$
            – Levent
            Jan 20 at 1:21










          • $begingroup$
            I inderstand. Thank you!
            $endgroup$
            – saki
            Jan 21 at 1:39











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080008%2fdescriptions-of-groups-of-order-45%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Your argument is fine. In a group of order $45$, the Sylow $3$-subgroup and the Sylow $5$-subgroup are necessarily normal. Hence the group is the direct product of these subgroups.



          For a group of order $9$, you have two possibilities :



          Either $C_9 = langle xmid x^9=1rangle$ or $C_3times C_3=langle x,ymid x^3=y^3=[x,y]=1rangle$.



          There is only one group of order $5$, namely $C_5=langle xmid x^5=1rangle$.



          Hence, there are two groups of order $45$, namely $C_9times C_5=C_{45}=langle xmid x^{45}=1rangle$ or $C_3times C_3times C_5=langle x,y,zmid x^3=y^3=z^5=[x,y]=[x,z]=[y,z]=1rangle$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you very much! And both of these groups are abelian, right?
            $endgroup$
            – saki
            Jan 20 at 1:20










          • $begingroup$
            Yes, they are both abelian.
            $endgroup$
            – Levent
            Jan 20 at 1:21










          • $begingroup$
            I inderstand. Thank you!
            $endgroup$
            – saki
            Jan 21 at 1:39
















          1












          $begingroup$

          Your argument is fine. In a group of order $45$, the Sylow $3$-subgroup and the Sylow $5$-subgroup are necessarily normal. Hence the group is the direct product of these subgroups.



          For a group of order $9$, you have two possibilities :



          Either $C_9 = langle xmid x^9=1rangle$ or $C_3times C_3=langle x,ymid x^3=y^3=[x,y]=1rangle$.



          There is only one group of order $5$, namely $C_5=langle xmid x^5=1rangle$.



          Hence, there are two groups of order $45$, namely $C_9times C_5=C_{45}=langle xmid x^{45}=1rangle$ or $C_3times C_3times C_5=langle x,y,zmid x^3=y^3=z^5=[x,y]=[x,z]=[y,z]=1rangle$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you very much! And both of these groups are abelian, right?
            $endgroup$
            – saki
            Jan 20 at 1:20










          • $begingroup$
            Yes, they are both abelian.
            $endgroup$
            – Levent
            Jan 20 at 1:21










          • $begingroup$
            I inderstand. Thank you!
            $endgroup$
            – saki
            Jan 21 at 1:39














          1












          1








          1





          $begingroup$

          Your argument is fine. In a group of order $45$, the Sylow $3$-subgroup and the Sylow $5$-subgroup are necessarily normal. Hence the group is the direct product of these subgroups.



          For a group of order $9$, you have two possibilities :



          Either $C_9 = langle xmid x^9=1rangle$ or $C_3times C_3=langle x,ymid x^3=y^3=[x,y]=1rangle$.



          There is only one group of order $5$, namely $C_5=langle xmid x^5=1rangle$.



          Hence, there are two groups of order $45$, namely $C_9times C_5=C_{45}=langle xmid x^{45}=1rangle$ or $C_3times C_3times C_5=langle x,y,zmid x^3=y^3=z^5=[x,y]=[x,z]=[y,z]=1rangle$.






          share|cite|improve this answer









          $endgroup$



          Your argument is fine. In a group of order $45$, the Sylow $3$-subgroup and the Sylow $5$-subgroup are necessarily normal. Hence the group is the direct product of these subgroups.



          For a group of order $9$, you have two possibilities :



          Either $C_9 = langle xmid x^9=1rangle$ or $C_3times C_3=langle x,ymid x^3=y^3=[x,y]=1rangle$.



          There is only one group of order $5$, namely $C_5=langle xmid x^5=1rangle$.



          Hence, there are two groups of order $45$, namely $C_9times C_5=C_{45}=langle xmid x^{45}=1rangle$ or $C_3times C_3times C_5=langle x,y,zmid x^3=y^3=z^5=[x,y]=[x,z]=[y,z]=1rangle$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 20 at 1:02









          LeventLevent

          2,729925




          2,729925












          • $begingroup$
            Thank you very much! And both of these groups are abelian, right?
            $endgroup$
            – saki
            Jan 20 at 1:20










          • $begingroup$
            Yes, they are both abelian.
            $endgroup$
            – Levent
            Jan 20 at 1:21










          • $begingroup$
            I inderstand. Thank you!
            $endgroup$
            – saki
            Jan 21 at 1:39


















          • $begingroup$
            Thank you very much! And both of these groups are abelian, right?
            $endgroup$
            – saki
            Jan 20 at 1:20










          • $begingroup$
            Yes, they are both abelian.
            $endgroup$
            – Levent
            Jan 20 at 1:21










          • $begingroup$
            I inderstand. Thank you!
            $endgroup$
            – saki
            Jan 21 at 1:39
















          $begingroup$
          Thank you very much! And both of these groups are abelian, right?
          $endgroup$
          – saki
          Jan 20 at 1:20




          $begingroup$
          Thank you very much! And both of these groups are abelian, right?
          $endgroup$
          – saki
          Jan 20 at 1:20












          $begingroup$
          Yes, they are both abelian.
          $endgroup$
          – Levent
          Jan 20 at 1:21




          $begingroup$
          Yes, they are both abelian.
          $endgroup$
          – Levent
          Jan 20 at 1:21












          $begingroup$
          I inderstand. Thank you!
          $endgroup$
          – saki
          Jan 21 at 1:39




          $begingroup$
          I inderstand. Thank you!
          $endgroup$
          – saki
          Jan 21 at 1:39


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080008%2fdescriptions-of-groups-of-order-45%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?