descriptions of groups of order $45$
$begingroup$
Describe the structure of groups of order $45$
Let $|G|=45$
If $G$ has an element of order $45$
$G=<x|x^{45}=1>$
If $G$ doesn’t have an element of order $45$
$P_9$: $9$-Sylow group
$P_5$: $5$-Sylow group
$P_9 triangleleft G$, $P_5 triangleleft G$, $P_9 cap P_5={1}$
Hence $P_9×P_5$ (direct)
$G=P_9×P_5$ (I’m not sure about this)
$P_9=<x,y| x^3=y^3=1, xy=yx>$
$P_5=<x| x^5=1>$
This is what I’ve got.
I can’t describe the structure of $P_9×P_5$
I want to describe it like $G=<...>$
group-theory
$endgroup$
add a comment |
$begingroup$
Describe the structure of groups of order $45$
Let $|G|=45$
If $G$ has an element of order $45$
$G=<x|x^{45}=1>$
If $G$ doesn’t have an element of order $45$
$P_9$: $9$-Sylow group
$P_5$: $5$-Sylow group
$P_9 triangleleft G$, $P_5 triangleleft G$, $P_9 cap P_5={1}$
Hence $P_9×P_5$ (direct)
$G=P_9×P_5$ (I’m not sure about this)
$P_9=<x,y| x^3=y^3=1, xy=yx>$
$P_5=<x| x^5=1>$
This is what I’ve got.
I can’t describe the structure of $P_9×P_5$
I want to describe it like $G=<...>$
group-theory
$endgroup$
add a comment |
$begingroup$
Describe the structure of groups of order $45$
Let $|G|=45$
If $G$ has an element of order $45$
$G=<x|x^{45}=1>$
If $G$ doesn’t have an element of order $45$
$P_9$: $9$-Sylow group
$P_5$: $5$-Sylow group
$P_9 triangleleft G$, $P_5 triangleleft G$, $P_9 cap P_5={1}$
Hence $P_9×P_5$ (direct)
$G=P_9×P_5$ (I’m not sure about this)
$P_9=<x,y| x^3=y^3=1, xy=yx>$
$P_5=<x| x^5=1>$
This is what I’ve got.
I can’t describe the structure of $P_9×P_5$
I want to describe it like $G=<...>$
group-theory
$endgroup$
Describe the structure of groups of order $45$
Let $|G|=45$
If $G$ has an element of order $45$
$G=<x|x^{45}=1>$
If $G$ doesn’t have an element of order $45$
$P_9$: $9$-Sylow group
$P_5$: $5$-Sylow group
$P_9 triangleleft G$, $P_5 triangleleft G$, $P_9 cap P_5={1}$
Hence $P_9×P_5$ (direct)
$G=P_9×P_5$ (I’m not sure about this)
$P_9=<x,y| x^3=y^3=1, xy=yx>$
$P_5=<x| x^5=1>$
This is what I’ve got.
I can’t describe the structure of $P_9×P_5$
I want to describe it like $G=<...>$
group-theory
group-theory
edited Jan 20 at 1:10
user289143
903313
903313
asked Jan 20 at 0:22
sakisaki
337
337
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your argument is fine. In a group of order $45$, the Sylow $3$-subgroup and the Sylow $5$-subgroup are necessarily normal. Hence the group is the direct product of these subgroups.
For a group of order $9$, you have two possibilities :
Either $C_9 = langle xmid x^9=1rangle$ or $C_3times C_3=langle x,ymid x^3=y^3=[x,y]=1rangle$.
There is only one group of order $5$, namely $C_5=langle xmid x^5=1rangle$.
Hence, there are two groups of order $45$, namely $C_9times C_5=C_{45}=langle xmid x^{45}=1rangle$ or $C_3times C_3times C_5=langle x,y,zmid x^3=y^3=z^5=[x,y]=[x,z]=[y,z]=1rangle$.
$endgroup$
$begingroup$
Thank you very much! And both of these groups are abelian, right?
$endgroup$
– saki
Jan 20 at 1:20
$begingroup$
Yes, they are both abelian.
$endgroup$
– Levent
Jan 20 at 1:21
$begingroup$
I inderstand. Thank you!
$endgroup$
– saki
Jan 21 at 1:39
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080008%2fdescriptions-of-groups-of-order-45%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your argument is fine. In a group of order $45$, the Sylow $3$-subgroup and the Sylow $5$-subgroup are necessarily normal. Hence the group is the direct product of these subgroups.
For a group of order $9$, you have two possibilities :
Either $C_9 = langle xmid x^9=1rangle$ or $C_3times C_3=langle x,ymid x^3=y^3=[x,y]=1rangle$.
There is only one group of order $5$, namely $C_5=langle xmid x^5=1rangle$.
Hence, there are two groups of order $45$, namely $C_9times C_5=C_{45}=langle xmid x^{45}=1rangle$ or $C_3times C_3times C_5=langle x,y,zmid x^3=y^3=z^5=[x,y]=[x,z]=[y,z]=1rangle$.
$endgroup$
$begingroup$
Thank you very much! And both of these groups are abelian, right?
$endgroup$
– saki
Jan 20 at 1:20
$begingroup$
Yes, they are both abelian.
$endgroup$
– Levent
Jan 20 at 1:21
$begingroup$
I inderstand. Thank you!
$endgroup$
– saki
Jan 21 at 1:39
add a comment |
$begingroup$
Your argument is fine. In a group of order $45$, the Sylow $3$-subgroup and the Sylow $5$-subgroup are necessarily normal. Hence the group is the direct product of these subgroups.
For a group of order $9$, you have two possibilities :
Either $C_9 = langle xmid x^9=1rangle$ or $C_3times C_3=langle x,ymid x^3=y^3=[x,y]=1rangle$.
There is only one group of order $5$, namely $C_5=langle xmid x^5=1rangle$.
Hence, there are two groups of order $45$, namely $C_9times C_5=C_{45}=langle xmid x^{45}=1rangle$ or $C_3times C_3times C_5=langle x,y,zmid x^3=y^3=z^5=[x,y]=[x,z]=[y,z]=1rangle$.
$endgroup$
$begingroup$
Thank you very much! And both of these groups are abelian, right?
$endgroup$
– saki
Jan 20 at 1:20
$begingroup$
Yes, they are both abelian.
$endgroup$
– Levent
Jan 20 at 1:21
$begingroup$
I inderstand. Thank you!
$endgroup$
– saki
Jan 21 at 1:39
add a comment |
$begingroup$
Your argument is fine. In a group of order $45$, the Sylow $3$-subgroup and the Sylow $5$-subgroup are necessarily normal. Hence the group is the direct product of these subgroups.
For a group of order $9$, you have two possibilities :
Either $C_9 = langle xmid x^9=1rangle$ or $C_3times C_3=langle x,ymid x^3=y^3=[x,y]=1rangle$.
There is only one group of order $5$, namely $C_5=langle xmid x^5=1rangle$.
Hence, there are two groups of order $45$, namely $C_9times C_5=C_{45}=langle xmid x^{45}=1rangle$ or $C_3times C_3times C_5=langle x,y,zmid x^3=y^3=z^5=[x,y]=[x,z]=[y,z]=1rangle$.
$endgroup$
Your argument is fine. In a group of order $45$, the Sylow $3$-subgroup and the Sylow $5$-subgroup are necessarily normal. Hence the group is the direct product of these subgroups.
For a group of order $9$, you have two possibilities :
Either $C_9 = langle xmid x^9=1rangle$ or $C_3times C_3=langle x,ymid x^3=y^3=[x,y]=1rangle$.
There is only one group of order $5$, namely $C_5=langle xmid x^5=1rangle$.
Hence, there are two groups of order $45$, namely $C_9times C_5=C_{45}=langle xmid x^{45}=1rangle$ or $C_3times C_3times C_5=langle x,y,zmid x^3=y^3=z^5=[x,y]=[x,z]=[y,z]=1rangle$.
answered Jan 20 at 1:02
LeventLevent
2,729925
2,729925
$begingroup$
Thank you very much! And both of these groups are abelian, right?
$endgroup$
– saki
Jan 20 at 1:20
$begingroup$
Yes, they are both abelian.
$endgroup$
– Levent
Jan 20 at 1:21
$begingroup$
I inderstand. Thank you!
$endgroup$
– saki
Jan 21 at 1:39
add a comment |
$begingroup$
Thank you very much! And both of these groups are abelian, right?
$endgroup$
– saki
Jan 20 at 1:20
$begingroup$
Yes, they are both abelian.
$endgroup$
– Levent
Jan 20 at 1:21
$begingroup$
I inderstand. Thank you!
$endgroup$
– saki
Jan 21 at 1:39
$begingroup$
Thank you very much! And both of these groups are abelian, right?
$endgroup$
– saki
Jan 20 at 1:20
$begingroup$
Thank you very much! And both of these groups are abelian, right?
$endgroup$
– saki
Jan 20 at 1:20
$begingroup$
Yes, they are both abelian.
$endgroup$
– Levent
Jan 20 at 1:21
$begingroup$
Yes, they are both abelian.
$endgroup$
– Levent
Jan 20 at 1:21
$begingroup$
I inderstand. Thank you!
$endgroup$
– saki
Jan 21 at 1:39
$begingroup$
I inderstand. Thank you!
$endgroup$
– saki
Jan 21 at 1:39
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080008%2fdescriptions-of-groups-of-order-45%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown