Prove $u(x,y,z)=f(t+r)/r+g(t-r)/r$ satisfies $u_{xx}+u_{yy}+u_{zz}=u_{tt}$.












3












$begingroup$


I'm trying to prove that any function $u=u(x,y,z)$ of the form $$u(x,y,z)=frac{f(t+r)}{r}+frac{g(t-r)}{r},$$ with $r^2=x^2+y^2+z^2$, satisfies the differential equation $ u_{xx}+u_{yy}+u_{zz}=u_{tt}, $ but I'm stuck when relating the derivatives.



From what I get, $$u_{tt} = dfrac{1}{r}(f''+g''),$$ as $r$ does not depend on $t$.



Furthermore, $$ u_x = dfrac{r_x}{r^2}left( r(f'-g')-(f+g) right), $$ so, if I'm not mistaken,



$$u_{xx} = dfrac{x^2}{r^3} (f''+g'') + dfrac{r^2-3x^2}{r^4}(f'-g') + dfrac{x^2-r^2}{r^5}(f+g). $$



(By symmetry, $u_{yy}$ and $u_{zz}$ have the same form).



But I don't know how to relate this expression to the other second derivatives, so I think I'm missing something...



Any ideas are greatly appreciated.
Thanks in advance!



EDIT: Corrected a $r^2$ term in the expression for $u_x$. Also, thanks to @Klaramun's and @TedShifrin's suggestions, I managed to reduce the expression for $u_{xx}$, noting that $f_x=f_y=f_z=f',, g_x=g_y=g_z=g'$, so I fixed that a couple lines up.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
    $endgroup$
    – Klaramun
    Jan 15 at 22:45






  • 1




    $begingroup$
    Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
    $endgroup$
    – Ted Shifrin
    Jan 15 at 22:55










  • $begingroup$
    @Klaramun Thanks, I'll try do that.
    $endgroup$
    – SantiMontouliu
    Jan 15 at 22:56










  • $begingroup$
    @TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
    $endgroup$
    – SantiMontouliu
    Jan 15 at 22:56






  • 2




    $begingroup$
    I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
    $endgroup$
    – Ted Shifrin
    Jan 15 at 23:00
















3












$begingroup$


I'm trying to prove that any function $u=u(x,y,z)$ of the form $$u(x,y,z)=frac{f(t+r)}{r}+frac{g(t-r)}{r},$$ with $r^2=x^2+y^2+z^2$, satisfies the differential equation $ u_{xx}+u_{yy}+u_{zz}=u_{tt}, $ but I'm stuck when relating the derivatives.



From what I get, $$u_{tt} = dfrac{1}{r}(f''+g''),$$ as $r$ does not depend on $t$.



Furthermore, $$ u_x = dfrac{r_x}{r^2}left( r(f'-g')-(f+g) right), $$ so, if I'm not mistaken,



$$u_{xx} = dfrac{x^2}{r^3} (f''+g'') + dfrac{r^2-3x^2}{r^4}(f'-g') + dfrac{x^2-r^2}{r^5}(f+g). $$



(By symmetry, $u_{yy}$ and $u_{zz}$ have the same form).



But I don't know how to relate this expression to the other second derivatives, so I think I'm missing something...



Any ideas are greatly appreciated.
Thanks in advance!



EDIT: Corrected a $r^2$ term in the expression for $u_x$. Also, thanks to @Klaramun's and @TedShifrin's suggestions, I managed to reduce the expression for $u_{xx}$, noting that $f_x=f_y=f_z=f',, g_x=g_y=g_z=g'$, so I fixed that a couple lines up.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
    $endgroup$
    – Klaramun
    Jan 15 at 22:45






  • 1




    $begingroup$
    Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
    $endgroup$
    – Ted Shifrin
    Jan 15 at 22:55










  • $begingroup$
    @Klaramun Thanks, I'll try do that.
    $endgroup$
    – SantiMontouliu
    Jan 15 at 22:56










  • $begingroup$
    @TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
    $endgroup$
    – SantiMontouliu
    Jan 15 at 22:56






  • 2




    $begingroup$
    I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
    $endgroup$
    – Ted Shifrin
    Jan 15 at 23:00














3












3








3





$begingroup$


I'm trying to prove that any function $u=u(x,y,z)$ of the form $$u(x,y,z)=frac{f(t+r)}{r}+frac{g(t-r)}{r},$$ with $r^2=x^2+y^2+z^2$, satisfies the differential equation $ u_{xx}+u_{yy}+u_{zz}=u_{tt}, $ but I'm stuck when relating the derivatives.



From what I get, $$u_{tt} = dfrac{1}{r}(f''+g''),$$ as $r$ does not depend on $t$.



Furthermore, $$ u_x = dfrac{r_x}{r^2}left( r(f'-g')-(f+g) right), $$ so, if I'm not mistaken,



$$u_{xx} = dfrac{x^2}{r^3} (f''+g'') + dfrac{r^2-3x^2}{r^4}(f'-g') + dfrac{x^2-r^2}{r^5}(f+g). $$



(By symmetry, $u_{yy}$ and $u_{zz}$ have the same form).



But I don't know how to relate this expression to the other second derivatives, so I think I'm missing something...



Any ideas are greatly appreciated.
Thanks in advance!



EDIT: Corrected a $r^2$ term in the expression for $u_x$. Also, thanks to @Klaramun's and @TedShifrin's suggestions, I managed to reduce the expression for $u_{xx}$, noting that $f_x=f_y=f_z=f',, g_x=g_y=g_z=g'$, so I fixed that a couple lines up.










share|cite|improve this question











$endgroup$




I'm trying to prove that any function $u=u(x,y,z)$ of the form $$u(x,y,z)=frac{f(t+r)}{r}+frac{g(t-r)}{r},$$ with $r^2=x^2+y^2+z^2$, satisfies the differential equation $ u_{xx}+u_{yy}+u_{zz}=u_{tt}, $ but I'm stuck when relating the derivatives.



From what I get, $$u_{tt} = dfrac{1}{r}(f''+g''),$$ as $r$ does not depend on $t$.



Furthermore, $$ u_x = dfrac{r_x}{r^2}left( r(f'-g')-(f+g) right), $$ so, if I'm not mistaken,



$$u_{xx} = dfrac{x^2}{r^3} (f''+g'') + dfrac{r^2-3x^2}{r^4}(f'-g') + dfrac{x^2-r^2}{r^5}(f+g). $$



(By symmetry, $u_{yy}$ and $u_{zz}$ have the same form).



But I don't know how to relate this expression to the other second derivatives, so I think I'm missing something...



Any ideas are greatly appreciated.
Thanks in advance!



EDIT: Corrected a $r^2$ term in the expression for $u_x$. Also, thanks to @Klaramun's and @TedShifrin's suggestions, I managed to reduce the expression for $u_{xx}$, noting that $f_x=f_y=f_z=f',, g_x=g_y=g_z=g'$, so I fixed that a couple lines up.







calculus multivariable-calculus pde






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 2:14







SantiMontouliu

















asked Jan 15 at 22:40









SantiMontouliuSantiMontouliu

528




528








  • 1




    $begingroup$
    Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
    $endgroup$
    – Klaramun
    Jan 15 at 22:45






  • 1




    $begingroup$
    Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
    $endgroup$
    – Ted Shifrin
    Jan 15 at 22:55










  • $begingroup$
    @Klaramun Thanks, I'll try do that.
    $endgroup$
    – SantiMontouliu
    Jan 15 at 22:56










  • $begingroup$
    @TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
    $endgroup$
    – SantiMontouliu
    Jan 15 at 22:56






  • 2




    $begingroup$
    I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
    $endgroup$
    – Ted Shifrin
    Jan 15 at 23:00














  • 1




    $begingroup$
    Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
    $endgroup$
    – Klaramun
    Jan 15 at 22:45






  • 1




    $begingroup$
    Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
    $endgroup$
    – Ted Shifrin
    Jan 15 at 22:55










  • $begingroup$
    @Klaramun Thanks, I'll try do that.
    $endgroup$
    – SantiMontouliu
    Jan 15 at 22:56










  • $begingroup$
    @TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
    $endgroup$
    – SantiMontouliu
    Jan 15 at 22:56






  • 2




    $begingroup$
    I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
    $endgroup$
    – Ted Shifrin
    Jan 15 at 23:00








1




1




$begingroup$
Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
$endgroup$
– Klaramun
Jan 15 at 22:45




$begingroup$
Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
$endgroup$
– Klaramun
Jan 15 at 22:45




1




1




$begingroup$
Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
$endgroup$
– Ted Shifrin
Jan 15 at 22:55




$begingroup$
Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
$endgroup$
– Ted Shifrin
Jan 15 at 22:55












$begingroup$
@Klaramun Thanks, I'll try do that.
$endgroup$
– SantiMontouliu
Jan 15 at 22:56




$begingroup$
@Klaramun Thanks, I'll try do that.
$endgroup$
– SantiMontouliu
Jan 15 at 22:56












$begingroup$
@TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
$endgroup$
– SantiMontouliu
Jan 15 at 22:56




$begingroup$
@TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
$endgroup$
– SantiMontouliu
Jan 15 at 22:56




2




2




$begingroup$
I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
$endgroup$
– Ted Shifrin
Jan 15 at 23:00




$begingroup$
I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
$endgroup$
– Ted Shifrin
Jan 15 at 23:00










2 Answers
2






active

oldest

votes


















2












$begingroup$

First, consider the function
$$h(x,y,z)=frac{f(t+r)}{r} tag 1$$
and with $r^2=x^2+y^2+z^2quad;quad rfrac{partial r}{partial x}=x quad;quad frac{partial r}{partial x}=frac{x}{r}$
$$h_x=left(frac{f'(t+r)}{r}-frac{f(t+r)}{r^2} right)frac{partial r}{partial x}=xfrac{f'}{r^2}-xfrac{f}{r^3} $$
In interest of space, we write $f$ instead of $f(t+r)$ and $f'$ instead of $f'(t+r)$ .
$$h_{xx}=left(frac{f'}{r^2}-frac{f}{r^3}right)+left(xfrac{f''}{r^2}-xfrac{f'}{r^3} right)frac{x}{r}+left(-2xfrac{f'}{r^3}+3xfrac{f}{r^4} right)frac{x}{r}$$
$$h_{xx}=frac{f'}{r^2}-frac{f}{r^3}+x^2frac{f''}{r^3}-x^2frac{f'}{r^4} -2x^2frac{f'}{r^4}+3x^2frac{f}{r^5}$$
$$h_{xx}=x^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
On the same manner, we get :
$$h_{yy}=y^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
$$h_{zz}=z^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
Adding the three equations
$$h_{xx}+h_{yy}+h_{zz}=(x^2+y^2+z^2)left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=r^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=frac{f''}{r}$$
From Eq.$(1)quad:quad h_t=frac{f'}{r}quad$and$quad h_{tt}=frac{f''}{r}quad$thus
$$h_{xx}+h_{yy}+h_{zz}=h_{tt}$$
This proves that
$$frac{f(t+r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Second, on the same manner one prouves that
$$frac{g(t-r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Any linear combination of solutions of the PDE $(1)$ is solution of the PDE because the PDE is linear. Thus
$$frac{f(t+r)}{r}+frac{g(t-r)}{r} quadtext{satisfies}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Very complete and clear. Thanks a lot!
    $endgroup$
    – SantiMontouliu
    Jan 17 at 2:55



















1












$begingroup$

Ok, so thanks to @Klaramun and @TedShifrin I managed to find the proper way to solve it. With the expression for $u_{xx}, , u_{yy}, , u_{zz}$ as added in the question, and noting that $r^2=x^2+y^2+z^2$, it's immediate that $$u_{xx}+u_{yy}+u_{zz} = dfrac{1}{r}(f''+g'') = u_{tt}.$$
Hope this helps somebody :)






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075069%2fprove-ux-y-z-ftr-rgt-r-r-satisfies-u-xxu-yyu-zz-u-tt%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    First, consider the function
    $$h(x,y,z)=frac{f(t+r)}{r} tag 1$$
    and with $r^2=x^2+y^2+z^2quad;quad rfrac{partial r}{partial x}=x quad;quad frac{partial r}{partial x}=frac{x}{r}$
    $$h_x=left(frac{f'(t+r)}{r}-frac{f(t+r)}{r^2} right)frac{partial r}{partial x}=xfrac{f'}{r^2}-xfrac{f}{r^3} $$
    In interest of space, we write $f$ instead of $f(t+r)$ and $f'$ instead of $f'(t+r)$ .
    $$h_{xx}=left(frac{f'}{r^2}-frac{f}{r^3}right)+left(xfrac{f''}{r^2}-xfrac{f'}{r^3} right)frac{x}{r}+left(-2xfrac{f'}{r^3}+3xfrac{f}{r^4} right)frac{x}{r}$$
    $$h_{xx}=frac{f'}{r^2}-frac{f}{r^3}+x^2frac{f''}{r^3}-x^2frac{f'}{r^4} -2x^2frac{f'}{r^4}+3x^2frac{f}{r^5}$$
    $$h_{xx}=x^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    On the same manner, we get :
    $$h_{yy}=y^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    $$h_{zz}=z^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    Adding the three equations
    $$h_{xx}+h_{yy}+h_{zz}=(x^2+y^2+z^2)left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
    $$h_{xx}+h_{yy}+h_{zz}=r^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
    $$h_{xx}+h_{yy}+h_{zz}=frac{f''}{r}$$
    From Eq.$(1)quad:quad h_t=frac{f'}{r}quad$and$quad h_{tt}=frac{f''}{r}quad$thus
    $$h_{xx}+h_{yy}+h_{zz}=h_{tt}$$
    This proves that
    $$frac{f(t+r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
    Second, on the same manner one prouves that
    $$frac{g(t-r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
    Any linear combination of solutions of the PDE $(1)$ is solution of the PDE because the PDE is linear. Thus
    $$frac{f(t+r)}{r}+frac{g(t-r)}{r} quadtext{satisfies}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Very complete and clear. Thanks a lot!
      $endgroup$
      – SantiMontouliu
      Jan 17 at 2:55
















    2












    $begingroup$

    First, consider the function
    $$h(x,y,z)=frac{f(t+r)}{r} tag 1$$
    and with $r^2=x^2+y^2+z^2quad;quad rfrac{partial r}{partial x}=x quad;quad frac{partial r}{partial x}=frac{x}{r}$
    $$h_x=left(frac{f'(t+r)}{r}-frac{f(t+r)}{r^2} right)frac{partial r}{partial x}=xfrac{f'}{r^2}-xfrac{f}{r^3} $$
    In interest of space, we write $f$ instead of $f(t+r)$ and $f'$ instead of $f'(t+r)$ .
    $$h_{xx}=left(frac{f'}{r^2}-frac{f}{r^3}right)+left(xfrac{f''}{r^2}-xfrac{f'}{r^3} right)frac{x}{r}+left(-2xfrac{f'}{r^3}+3xfrac{f}{r^4} right)frac{x}{r}$$
    $$h_{xx}=frac{f'}{r^2}-frac{f}{r^3}+x^2frac{f''}{r^3}-x^2frac{f'}{r^4} -2x^2frac{f'}{r^4}+3x^2frac{f}{r^5}$$
    $$h_{xx}=x^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    On the same manner, we get :
    $$h_{yy}=y^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    $$h_{zz}=z^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    Adding the three equations
    $$h_{xx}+h_{yy}+h_{zz}=(x^2+y^2+z^2)left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
    $$h_{xx}+h_{yy}+h_{zz}=r^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
    $$h_{xx}+h_{yy}+h_{zz}=frac{f''}{r}$$
    From Eq.$(1)quad:quad h_t=frac{f'}{r}quad$and$quad h_{tt}=frac{f''}{r}quad$thus
    $$h_{xx}+h_{yy}+h_{zz}=h_{tt}$$
    This proves that
    $$frac{f(t+r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
    Second, on the same manner one prouves that
    $$frac{g(t-r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
    Any linear combination of solutions of the PDE $(1)$ is solution of the PDE because the PDE is linear. Thus
    $$frac{f(t+r)}{r}+frac{g(t-r)}{r} quadtext{satisfies}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Very complete and clear. Thanks a lot!
      $endgroup$
      – SantiMontouliu
      Jan 17 at 2:55














    2












    2








    2





    $begingroup$

    First, consider the function
    $$h(x,y,z)=frac{f(t+r)}{r} tag 1$$
    and with $r^2=x^2+y^2+z^2quad;quad rfrac{partial r}{partial x}=x quad;quad frac{partial r}{partial x}=frac{x}{r}$
    $$h_x=left(frac{f'(t+r)}{r}-frac{f(t+r)}{r^2} right)frac{partial r}{partial x}=xfrac{f'}{r^2}-xfrac{f}{r^3} $$
    In interest of space, we write $f$ instead of $f(t+r)$ and $f'$ instead of $f'(t+r)$ .
    $$h_{xx}=left(frac{f'}{r^2}-frac{f}{r^3}right)+left(xfrac{f''}{r^2}-xfrac{f'}{r^3} right)frac{x}{r}+left(-2xfrac{f'}{r^3}+3xfrac{f}{r^4} right)frac{x}{r}$$
    $$h_{xx}=frac{f'}{r^2}-frac{f}{r^3}+x^2frac{f''}{r^3}-x^2frac{f'}{r^4} -2x^2frac{f'}{r^4}+3x^2frac{f}{r^5}$$
    $$h_{xx}=x^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    On the same manner, we get :
    $$h_{yy}=y^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    $$h_{zz}=z^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    Adding the three equations
    $$h_{xx}+h_{yy}+h_{zz}=(x^2+y^2+z^2)left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
    $$h_{xx}+h_{yy}+h_{zz}=r^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
    $$h_{xx}+h_{yy}+h_{zz}=frac{f''}{r}$$
    From Eq.$(1)quad:quad h_t=frac{f'}{r}quad$and$quad h_{tt}=frac{f''}{r}quad$thus
    $$h_{xx}+h_{yy}+h_{zz}=h_{tt}$$
    This proves that
    $$frac{f(t+r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
    Second, on the same manner one prouves that
    $$frac{g(t-r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
    Any linear combination of solutions of the PDE $(1)$ is solution of the PDE because the PDE is linear. Thus
    $$frac{f(t+r)}{r}+frac{g(t-r)}{r} quadtext{satisfies}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$






    share|cite|improve this answer









    $endgroup$



    First, consider the function
    $$h(x,y,z)=frac{f(t+r)}{r} tag 1$$
    and with $r^2=x^2+y^2+z^2quad;quad rfrac{partial r}{partial x}=x quad;quad frac{partial r}{partial x}=frac{x}{r}$
    $$h_x=left(frac{f'(t+r)}{r}-frac{f(t+r)}{r^2} right)frac{partial r}{partial x}=xfrac{f'}{r^2}-xfrac{f}{r^3} $$
    In interest of space, we write $f$ instead of $f(t+r)$ and $f'$ instead of $f'(t+r)$ .
    $$h_{xx}=left(frac{f'}{r^2}-frac{f}{r^3}right)+left(xfrac{f''}{r^2}-xfrac{f'}{r^3} right)frac{x}{r}+left(-2xfrac{f'}{r^3}+3xfrac{f}{r^4} right)frac{x}{r}$$
    $$h_{xx}=frac{f'}{r^2}-frac{f}{r^3}+x^2frac{f''}{r^3}-x^2frac{f'}{r^4} -2x^2frac{f'}{r^4}+3x^2frac{f}{r^5}$$
    $$h_{xx}=x^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    On the same manner, we get :
    $$h_{yy}=y^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    $$h_{zz}=z^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
    Adding the three equations
    $$h_{xx}+h_{yy}+h_{zz}=(x^2+y^2+z^2)left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
    $$h_{xx}+h_{yy}+h_{zz}=r^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
    $$h_{xx}+h_{yy}+h_{zz}=frac{f''}{r}$$
    From Eq.$(1)quad:quad h_t=frac{f'}{r}quad$and$quad h_{tt}=frac{f''}{r}quad$thus
    $$h_{xx}+h_{yy}+h_{zz}=h_{tt}$$
    This proves that
    $$frac{f(t+r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
    Second, on the same manner one prouves that
    $$frac{g(t-r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
    Any linear combination of solutions of the PDE $(1)$ is solution of the PDE because the PDE is linear. Thus
    $$frac{f(t+r)}{r}+frac{g(t-r)}{r} quadtext{satisfies}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 16 at 6:53









    JJacquelinJJacquelin

    43.6k21853




    43.6k21853












    • $begingroup$
      Very complete and clear. Thanks a lot!
      $endgroup$
      – SantiMontouliu
      Jan 17 at 2:55


















    • $begingroup$
      Very complete and clear. Thanks a lot!
      $endgroup$
      – SantiMontouliu
      Jan 17 at 2:55
















    $begingroup$
    Very complete and clear. Thanks a lot!
    $endgroup$
    – SantiMontouliu
    Jan 17 at 2:55




    $begingroup$
    Very complete and clear. Thanks a lot!
    $endgroup$
    – SantiMontouliu
    Jan 17 at 2:55











    1












    $begingroup$

    Ok, so thanks to @Klaramun and @TedShifrin I managed to find the proper way to solve it. With the expression for $u_{xx}, , u_{yy}, , u_{zz}$ as added in the question, and noting that $r^2=x^2+y^2+z^2$, it's immediate that $$u_{xx}+u_{yy}+u_{zz} = dfrac{1}{r}(f''+g'') = u_{tt}.$$
    Hope this helps somebody :)






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Ok, so thanks to @Klaramun and @TedShifrin I managed to find the proper way to solve it. With the expression for $u_{xx}, , u_{yy}, , u_{zz}$ as added in the question, and noting that $r^2=x^2+y^2+z^2$, it's immediate that $$u_{xx}+u_{yy}+u_{zz} = dfrac{1}{r}(f''+g'') = u_{tt}.$$
      Hope this helps somebody :)






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Ok, so thanks to @Klaramun and @TedShifrin I managed to find the proper way to solve it. With the expression for $u_{xx}, , u_{yy}, , u_{zz}$ as added in the question, and noting that $r^2=x^2+y^2+z^2$, it's immediate that $$u_{xx}+u_{yy}+u_{zz} = dfrac{1}{r}(f''+g'') = u_{tt}.$$
        Hope this helps somebody :)






        share|cite|improve this answer









        $endgroup$



        Ok, so thanks to @Klaramun and @TedShifrin I managed to find the proper way to solve it. With the expression for $u_{xx}, , u_{yy}, , u_{zz}$ as added in the question, and noting that $r^2=x^2+y^2+z^2$, it's immediate that $$u_{xx}+u_{yy}+u_{zz} = dfrac{1}{r}(f''+g'') = u_{tt}.$$
        Hope this helps somebody :)







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 16 at 2:22









        SantiMontouliuSantiMontouliu

        528




        528






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075069%2fprove-ux-y-z-ftr-rgt-r-r-satisfies-u-xxu-yyu-zz-u-tt%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            What does “Dominus providebit” mean?

            Antonio Litta Visconti Arese