Prove $u(x,y,z)=f(t+r)/r+g(t-r)/r$ satisfies $u_{xx}+u_{yy}+u_{zz}=u_{tt}$.
$begingroup$
I'm trying to prove that any function $u=u(x,y,z)$ of the form $$u(x,y,z)=frac{f(t+r)}{r}+frac{g(t-r)}{r},$$ with $r^2=x^2+y^2+z^2$, satisfies the differential equation $ u_{xx}+u_{yy}+u_{zz}=u_{tt}, $ but I'm stuck when relating the derivatives.
From what I get, $$u_{tt} = dfrac{1}{r}(f''+g''),$$ as $r$ does not depend on $t$.
Furthermore, $$ u_x = dfrac{r_x}{r^2}left( r(f'-g')-(f+g) right), $$ so, if I'm not mistaken,
$$u_{xx} = dfrac{x^2}{r^3} (f''+g'') + dfrac{r^2-3x^2}{r^4}(f'-g') + dfrac{x^2-r^2}{r^5}(f+g). $$
(By symmetry, $u_{yy}$ and $u_{zz}$ have the same form).
But I don't know how to relate this expression to the other second derivatives, so I think I'm missing something...
Any ideas are greatly appreciated.
Thanks in advance!
EDIT: Corrected a $r^2$ term in the expression for $u_x$. Also, thanks to @Klaramun's and @TedShifrin's suggestions, I managed to reduce the expression for $u_{xx}$, noting that $f_x=f_y=f_z=f',, g_x=g_y=g_z=g'$, so I fixed that a couple lines up.
calculus multivariable-calculus pde
$endgroup$
|
show 1 more comment
$begingroup$
I'm trying to prove that any function $u=u(x,y,z)$ of the form $$u(x,y,z)=frac{f(t+r)}{r}+frac{g(t-r)}{r},$$ with $r^2=x^2+y^2+z^2$, satisfies the differential equation $ u_{xx}+u_{yy}+u_{zz}=u_{tt}, $ but I'm stuck when relating the derivatives.
From what I get, $$u_{tt} = dfrac{1}{r}(f''+g''),$$ as $r$ does not depend on $t$.
Furthermore, $$ u_x = dfrac{r_x}{r^2}left( r(f'-g')-(f+g) right), $$ so, if I'm not mistaken,
$$u_{xx} = dfrac{x^2}{r^3} (f''+g'') + dfrac{r^2-3x^2}{r^4}(f'-g') + dfrac{x^2-r^2}{r^5}(f+g). $$
(By symmetry, $u_{yy}$ and $u_{zz}$ have the same form).
But I don't know how to relate this expression to the other second derivatives, so I think I'm missing something...
Any ideas are greatly appreciated.
Thanks in advance!
EDIT: Corrected a $r^2$ term in the expression for $u_x$. Also, thanks to @Klaramun's and @TedShifrin's suggestions, I managed to reduce the expression for $u_{xx}$, noting that $f_x=f_y=f_z=f',, g_x=g_y=g_z=g'$, so I fixed that a couple lines up.
calculus multivariable-calculus pde
$endgroup$
1
$begingroup$
Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
$endgroup$
– Klaramun
Jan 15 at 22:45
1
$begingroup$
Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
$endgroup$
– Ted Shifrin
Jan 15 at 22:55
$begingroup$
@Klaramun Thanks, I'll try do that.
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
$begingroup$
@TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
2
$begingroup$
I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
$endgroup$
– Ted Shifrin
Jan 15 at 23:00
|
show 1 more comment
$begingroup$
I'm trying to prove that any function $u=u(x,y,z)$ of the form $$u(x,y,z)=frac{f(t+r)}{r}+frac{g(t-r)}{r},$$ with $r^2=x^2+y^2+z^2$, satisfies the differential equation $ u_{xx}+u_{yy}+u_{zz}=u_{tt}, $ but I'm stuck when relating the derivatives.
From what I get, $$u_{tt} = dfrac{1}{r}(f''+g''),$$ as $r$ does not depend on $t$.
Furthermore, $$ u_x = dfrac{r_x}{r^2}left( r(f'-g')-(f+g) right), $$ so, if I'm not mistaken,
$$u_{xx} = dfrac{x^2}{r^3} (f''+g'') + dfrac{r^2-3x^2}{r^4}(f'-g') + dfrac{x^2-r^2}{r^5}(f+g). $$
(By symmetry, $u_{yy}$ and $u_{zz}$ have the same form).
But I don't know how to relate this expression to the other second derivatives, so I think I'm missing something...
Any ideas are greatly appreciated.
Thanks in advance!
EDIT: Corrected a $r^2$ term in the expression for $u_x$. Also, thanks to @Klaramun's and @TedShifrin's suggestions, I managed to reduce the expression for $u_{xx}$, noting that $f_x=f_y=f_z=f',, g_x=g_y=g_z=g'$, so I fixed that a couple lines up.
calculus multivariable-calculus pde
$endgroup$
I'm trying to prove that any function $u=u(x,y,z)$ of the form $$u(x,y,z)=frac{f(t+r)}{r}+frac{g(t-r)}{r},$$ with $r^2=x^2+y^2+z^2$, satisfies the differential equation $ u_{xx}+u_{yy}+u_{zz}=u_{tt}, $ but I'm stuck when relating the derivatives.
From what I get, $$u_{tt} = dfrac{1}{r}(f''+g''),$$ as $r$ does not depend on $t$.
Furthermore, $$ u_x = dfrac{r_x}{r^2}left( r(f'-g')-(f+g) right), $$ so, if I'm not mistaken,
$$u_{xx} = dfrac{x^2}{r^3} (f''+g'') + dfrac{r^2-3x^2}{r^4}(f'-g') + dfrac{x^2-r^2}{r^5}(f+g). $$
(By symmetry, $u_{yy}$ and $u_{zz}$ have the same form).
But I don't know how to relate this expression to the other second derivatives, so I think I'm missing something...
Any ideas are greatly appreciated.
Thanks in advance!
EDIT: Corrected a $r^2$ term in the expression for $u_x$. Also, thanks to @Klaramun's and @TedShifrin's suggestions, I managed to reduce the expression for $u_{xx}$, noting that $f_x=f_y=f_z=f',, g_x=g_y=g_z=g'$, so I fixed that a couple lines up.
calculus multivariable-calculus pde
calculus multivariable-calculus pde
edited Jan 16 at 2:14
SantiMontouliu
asked Jan 15 at 22:40
SantiMontouliuSantiMontouliu
528
528
1
$begingroup$
Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
$endgroup$
– Klaramun
Jan 15 at 22:45
1
$begingroup$
Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
$endgroup$
– Ted Shifrin
Jan 15 at 22:55
$begingroup$
@Klaramun Thanks, I'll try do that.
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
$begingroup$
@TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
2
$begingroup$
I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
$endgroup$
– Ted Shifrin
Jan 15 at 23:00
|
show 1 more comment
1
$begingroup$
Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
$endgroup$
– Klaramun
Jan 15 at 22:45
1
$begingroup$
Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
$endgroup$
– Ted Shifrin
Jan 15 at 22:55
$begingroup$
@Klaramun Thanks, I'll try do that.
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
$begingroup$
@TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
2
$begingroup$
I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
$endgroup$
– Ted Shifrin
Jan 15 at 23:00
1
1
$begingroup$
Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
$endgroup$
– Klaramun
Jan 15 at 22:45
$begingroup$
Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
$endgroup$
– Klaramun
Jan 15 at 22:45
1
1
$begingroup$
Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
$endgroup$
– Ted Shifrin
Jan 15 at 22:55
$begingroup$
Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
$endgroup$
– Ted Shifrin
Jan 15 at 22:55
$begingroup$
@Klaramun Thanks, I'll try do that.
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
$begingroup$
@Klaramun Thanks, I'll try do that.
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
$begingroup$
@TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
$begingroup$
@TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
2
2
$begingroup$
I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
$endgroup$
– Ted Shifrin
Jan 15 at 23:00
$begingroup$
I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
$endgroup$
– Ted Shifrin
Jan 15 at 23:00
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
First, consider the function
$$h(x,y,z)=frac{f(t+r)}{r} tag 1$$
and with $r^2=x^2+y^2+z^2quad;quad rfrac{partial r}{partial x}=x quad;quad frac{partial r}{partial x}=frac{x}{r}$
$$h_x=left(frac{f'(t+r)}{r}-frac{f(t+r)}{r^2} right)frac{partial r}{partial x}=xfrac{f'}{r^2}-xfrac{f}{r^3} $$
In interest of space, we write $f$ instead of $f(t+r)$ and $f'$ instead of $f'(t+r)$ .
$$h_{xx}=left(frac{f'}{r^2}-frac{f}{r^3}right)+left(xfrac{f''}{r^2}-xfrac{f'}{r^3} right)frac{x}{r}+left(-2xfrac{f'}{r^3}+3xfrac{f}{r^4} right)frac{x}{r}$$
$$h_{xx}=frac{f'}{r^2}-frac{f}{r^3}+x^2frac{f''}{r^3}-x^2frac{f'}{r^4} -2x^2frac{f'}{r^4}+3x^2frac{f}{r^5}$$
$$h_{xx}=x^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
On the same manner, we get :
$$h_{yy}=y^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
$$h_{zz}=z^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
Adding the three equations
$$h_{xx}+h_{yy}+h_{zz}=(x^2+y^2+z^2)left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=r^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=frac{f''}{r}$$
From Eq.$(1)quad:quad h_t=frac{f'}{r}quad$and$quad h_{tt}=frac{f''}{r}quad$thus
$$h_{xx}+h_{yy}+h_{zz}=h_{tt}$$
This proves that
$$frac{f(t+r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Second, on the same manner one prouves that
$$frac{g(t-r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Any linear combination of solutions of the PDE $(1)$ is solution of the PDE because the PDE is linear. Thus
$$frac{f(t+r)}{r}+frac{g(t-r)}{r} quadtext{satisfies}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
$endgroup$
$begingroup$
Very complete and clear. Thanks a lot!
$endgroup$
– SantiMontouliu
Jan 17 at 2:55
add a comment |
$begingroup$
Ok, so thanks to @Klaramun and @TedShifrin I managed to find the proper way to solve it. With the expression for $u_{xx}, , u_{yy}, , u_{zz}$ as added in the question, and noting that $r^2=x^2+y^2+z^2$, it's immediate that $$u_{xx}+u_{yy}+u_{zz} = dfrac{1}{r}(f''+g'') = u_{tt}.$$
Hope this helps somebody :)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075069%2fprove-ux-y-z-ftr-rgt-r-r-satisfies-u-xxu-yyu-zz-u-tt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First, consider the function
$$h(x,y,z)=frac{f(t+r)}{r} tag 1$$
and with $r^2=x^2+y^2+z^2quad;quad rfrac{partial r}{partial x}=x quad;quad frac{partial r}{partial x}=frac{x}{r}$
$$h_x=left(frac{f'(t+r)}{r}-frac{f(t+r)}{r^2} right)frac{partial r}{partial x}=xfrac{f'}{r^2}-xfrac{f}{r^3} $$
In interest of space, we write $f$ instead of $f(t+r)$ and $f'$ instead of $f'(t+r)$ .
$$h_{xx}=left(frac{f'}{r^2}-frac{f}{r^3}right)+left(xfrac{f''}{r^2}-xfrac{f'}{r^3} right)frac{x}{r}+left(-2xfrac{f'}{r^3}+3xfrac{f}{r^4} right)frac{x}{r}$$
$$h_{xx}=frac{f'}{r^2}-frac{f}{r^3}+x^2frac{f''}{r^3}-x^2frac{f'}{r^4} -2x^2frac{f'}{r^4}+3x^2frac{f}{r^5}$$
$$h_{xx}=x^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
On the same manner, we get :
$$h_{yy}=y^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
$$h_{zz}=z^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
Adding the three equations
$$h_{xx}+h_{yy}+h_{zz}=(x^2+y^2+z^2)left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=r^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=frac{f''}{r}$$
From Eq.$(1)quad:quad h_t=frac{f'}{r}quad$and$quad h_{tt}=frac{f''}{r}quad$thus
$$h_{xx}+h_{yy}+h_{zz}=h_{tt}$$
This proves that
$$frac{f(t+r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Second, on the same manner one prouves that
$$frac{g(t-r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Any linear combination of solutions of the PDE $(1)$ is solution of the PDE because the PDE is linear. Thus
$$frac{f(t+r)}{r}+frac{g(t-r)}{r} quadtext{satisfies}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
$endgroup$
$begingroup$
Very complete and clear. Thanks a lot!
$endgroup$
– SantiMontouliu
Jan 17 at 2:55
add a comment |
$begingroup$
First, consider the function
$$h(x,y,z)=frac{f(t+r)}{r} tag 1$$
and with $r^2=x^2+y^2+z^2quad;quad rfrac{partial r}{partial x}=x quad;quad frac{partial r}{partial x}=frac{x}{r}$
$$h_x=left(frac{f'(t+r)}{r}-frac{f(t+r)}{r^2} right)frac{partial r}{partial x}=xfrac{f'}{r^2}-xfrac{f}{r^3} $$
In interest of space, we write $f$ instead of $f(t+r)$ and $f'$ instead of $f'(t+r)$ .
$$h_{xx}=left(frac{f'}{r^2}-frac{f}{r^3}right)+left(xfrac{f''}{r^2}-xfrac{f'}{r^3} right)frac{x}{r}+left(-2xfrac{f'}{r^3}+3xfrac{f}{r^4} right)frac{x}{r}$$
$$h_{xx}=frac{f'}{r^2}-frac{f}{r^3}+x^2frac{f''}{r^3}-x^2frac{f'}{r^4} -2x^2frac{f'}{r^4}+3x^2frac{f}{r^5}$$
$$h_{xx}=x^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
On the same manner, we get :
$$h_{yy}=y^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
$$h_{zz}=z^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
Adding the three equations
$$h_{xx}+h_{yy}+h_{zz}=(x^2+y^2+z^2)left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=r^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=frac{f''}{r}$$
From Eq.$(1)quad:quad h_t=frac{f'}{r}quad$and$quad h_{tt}=frac{f''}{r}quad$thus
$$h_{xx}+h_{yy}+h_{zz}=h_{tt}$$
This proves that
$$frac{f(t+r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Second, on the same manner one prouves that
$$frac{g(t-r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Any linear combination of solutions of the PDE $(1)$ is solution of the PDE because the PDE is linear. Thus
$$frac{f(t+r)}{r}+frac{g(t-r)}{r} quadtext{satisfies}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
$endgroup$
$begingroup$
Very complete and clear. Thanks a lot!
$endgroup$
– SantiMontouliu
Jan 17 at 2:55
add a comment |
$begingroup$
First, consider the function
$$h(x,y,z)=frac{f(t+r)}{r} tag 1$$
and with $r^2=x^2+y^2+z^2quad;quad rfrac{partial r}{partial x}=x quad;quad frac{partial r}{partial x}=frac{x}{r}$
$$h_x=left(frac{f'(t+r)}{r}-frac{f(t+r)}{r^2} right)frac{partial r}{partial x}=xfrac{f'}{r^2}-xfrac{f}{r^3} $$
In interest of space, we write $f$ instead of $f(t+r)$ and $f'$ instead of $f'(t+r)$ .
$$h_{xx}=left(frac{f'}{r^2}-frac{f}{r^3}right)+left(xfrac{f''}{r^2}-xfrac{f'}{r^3} right)frac{x}{r}+left(-2xfrac{f'}{r^3}+3xfrac{f}{r^4} right)frac{x}{r}$$
$$h_{xx}=frac{f'}{r^2}-frac{f}{r^3}+x^2frac{f''}{r^3}-x^2frac{f'}{r^4} -2x^2frac{f'}{r^4}+3x^2frac{f}{r^5}$$
$$h_{xx}=x^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
On the same manner, we get :
$$h_{yy}=y^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
$$h_{zz}=z^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
Adding the three equations
$$h_{xx}+h_{yy}+h_{zz}=(x^2+y^2+z^2)left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=r^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=frac{f''}{r}$$
From Eq.$(1)quad:quad h_t=frac{f'}{r}quad$and$quad h_{tt}=frac{f''}{r}quad$thus
$$h_{xx}+h_{yy}+h_{zz}=h_{tt}$$
This proves that
$$frac{f(t+r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Second, on the same manner one prouves that
$$frac{g(t-r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Any linear combination of solutions of the PDE $(1)$ is solution of the PDE because the PDE is linear. Thus
$$frac{f(t+r)}{r}+frac{g(t-r)}{r} quadtext{satisfies}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
$endgroup$
First, consider the function
$$h(x,y,z)=frac{f(t+r)}{r} tag 1$$
and with $r^2=x^2+y^2+z^2quad;quad rfrac{partial r}{partial x}=x quad;quad frac{partial r}{partial x}=frac{x}{r}$
$$h_x=left(frac{f'(t+r)}{r}-frac{f(t+r)}{r^2} right)frac{partial r}{partial x}=xfrac{f'}{r^2}-xfrac{f}{r^3} $$
In interest of space, we write $f$ instead of $f(t+r)$ and $f'$ instead of $f'(t+r)$ .
$$h_{xx}=left(frac{f'}{r^2}-frac{f}{r^3}right)+left(xfrac{f''}{r^2}-xfrac{f'}{r^3} right)frac{x}{r}+left(-2xfrac{f'}{r^3}+3xfrac{f}{r^4} right)frac{x}{r}$$
$$h_{xx}=frac{f'}{r^2}-frac{f}{r^3}+x^2frac{f''}{r^3}-x^2frac{f'}{r^4} -2x^2frac{f'}{r^4}+3x^2frac{f}{r^5}$$
$$h_{xx}=x^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
On the same manner, we get :
$$h_{yy}=y^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
$$h_{zz}=z^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+frac{f'}{r^2}-frac{f}{r^3}$$
Adding the three equations
$$h_{xx}+h_{yy}+h_{zz}=(x^2+y^2+z^2)left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=r^2left(frac{f''}{r^3} -3frac{f'}{r^4}+3frac{f}{r^5}right)+3frac{f'}{r^2}-3frac{f}{r^3}$$
$$h_{xx}+h_{yy}+h_{zz}=frac{f''}{r}$$
From Eq.$(1)quad:quad h_t=frac{f'}{r}quad$and$quad h_{tt}=frac{f''}{r}quad$thus
$$h_{xx}+h_{yy}+h_{zz}=h_{tt}$$
This proves that
$$frac{f(t+r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Second, on the same manner one prouves that
$$frac{g(t-r)}{r}quad text{is solution of}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
Any linear combination of solutions of the PDE $(1)$ is solution of the PDE because the PDE is linear. Thus
$$frac{f(t+r)}{r}+frac{g(t-r)}{r} quadtext{satisfies}quad u_{xx}+u_{yy}+u_{zz}=u_{tt}$$
answered Jan 16 at 6:53
JJacquelinJJacquelin
43.6k21853
43.6k21853
$begingroup$
Very complete and clear. Thanks a lot!
$endgroup$
– SantiMontouliu
Jan 17 at 2:55
add a comment |
$begingroup$
Very complete and clear. Thanks a lot!
$endgroup$
– SantiMontouliu
Jan 17 at 2:55
$begingroup$
Very complete and clear. Thanks a lot!
$endgroup$
– SantiMontouliu
Jan 17 at 2:55
$begingroup$
Very complete and clear. Thanks a lot!
$endgroup$
– SantiMontouliu
Jan 17 at 2:55
add a comment |
$begingroup$
Ok, so thanks to @Klaramun and @TedShifrin I managed to find the proper way to solve it. With the expression for $u_{xx}, , u_{yy}, , u_{zz}$ as added in the question, and noting that $r^2=x^2+y^2+z^2$, it's immediate that $$u_{xx}+u_{yy}+u_{zz} = dfrac{1}{r}(f''+g'') = u_{tt}.$$
Hope this helps somebody :)
$endgroup$
add a comment |
$begingroup$
Ok, so thanks to @Klaramun and @TedShifrin I managed to find the proper way to solve it. With the expression for $u_{xx}, , u_{yy}, , u_{zz}$ as added in the question, and noting that $r^2=x^2+y^2+z^2$, it's immediate that $$u_{xx}+u_{yy}+u_{zz} = dfrac{1}{r}(f''+g'') = u_{tt}.$$
Hope this helps somebody :)
$endgroup$
add a comment |
$begingroup$
Ok, so thanks to @Klaramun and @TedShifrin I managed to find the proper way to solve it. With the expression for $u_{xx}, , u_{yy}, , u_{zz}$ as added in the question, and noting that $r^2=x^2+y^2+z^2$, it's immediate that $$u_{xx}+u_{yy}+u_{zz} = dfrac{1}{r}(f''+g'') = u_{tt}.$$
Hope this helps somebody :)
$endgroup$
Ok, so thanks to @Klaramun and @TedShifrin I managed to find the proper way to solve it. With the expression for $u_{xx}, , u_{yy}, , u_{zz}$ as added in the question, and noting that $r^2=x^2+y^2+z^2$, it's immediate that $$u_{xx}+u_{yy}+u_{zz} = dfrac{1}{r}(f''+g'') = u_{tt}.$$
Hope this helps somebody :)
answered Jan 16 at 2:22
SantiMontouliuSantiMontouliu
528
528
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075069%2fprove-ux-y-z-ftr-rgt-r-r-satisfies-u-xxu-yyu-zz-u-tt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Try computing the derivative $f_x$, since the dependence of $f$ in $x$ is only through $r = sqrt{x^2+y^2+z^2}$.
$endgroup$
– Klaramun
Jan 15 at 22:45
1
$begingroup$
Shouldn't there be a factor of $r^{-2}$ when you take the first derivative of $f(t+r)/r$?
$endgroup$
– Ted Shifrin
Jan 15 at 22:55
$begingroup$
@Klaramun Thanks, I'll try do that.
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
$begingroup$
@TedShifrin You're right, thanks! Let me check again, I'll update in a couple minutes
$endgroup$
– SantiMontouliu
Jan 15 at 22:56
2
$begingroup$
I want to elaborate on @Klaramun's comment. $f$ is a function of one variable, so $f_x$ makes no sense (except sloppily). We are considering $F(x,y,z,t) = f(t+r(x,y,z))$ (and then dividing by $r(x,y,z)$. So please write $f'$ and use chain rule. Don't write $f_x$ ... ever!! :)
$endgroup$
– Ted Shifrin
Jan 15 at 23:00