Prove that if $f$ is continuous at $x_0in [a,b]$ and $f(x_0)neq 0,$ then $suplimits_{P}L(|f|,P)>0$












1












$begingroup$


Can you help me check if this proof is correct? If not, kindly provide a better proof




Prove that if $f$ is continuous at $x_0in [a,b]$ and $f(x_0)neq 0,$ then $suplimits_{P}L(|f|,P)>0$




Suppose $a<b$. For $epsilon=|f(x_0)|/2,$ there exists $delta>0$ such that $$|f(x)|>dfrac{1}{2}|f(x_0)|,;;text{whenever};;xin(x_0-delta,x_0+delta).$$
Choose a uniform partition $P_n$, for each $n,$ such that
$$a=x_0<x_1<cdots<x_n=b;;text{and};;x_j-x_{j-1}=(b-a)/n,;;jin {1,2,cdots,n}.$$
Hence,
begin{align}suplimits_{P_n}L(|f|,P_n)&= limlimits_{nto infty}sum^{n}_{j=1}|f(t_j)|(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}sum^{n}_{j=1}(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(x_n-x_{0})\&= dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(b-a)\&= dfrac{1}{2}|f(x_0)|(b-a)\&>0end{align}










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
    $endgroup$
    – Michael Burr
    Jan 15 at 22:59












  • $begingroup$
    @Michael Burr: I'll do that!
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:02
















1












$begingroup$


Can you help me check if this proof is correct? If not, kindly provide a better proof




Prove that if $f$ is continuous at $x_0in [a,b]$ and $f(x_0)neq 0,$ then $suplimits_{P}L(|f|,P)>0$




Suppose $a<b$. For $epsilon=|f(x_0)|/2,$ there exists $delta>0$ such that $$|f(x)|>dfrac{1}{2}|f(x_0)|,;;text{whenever};;xin(x_0-delta,x_0+delta).$$
Choose a uniform partition $P_n$, for each $n,$ such that
$$a=x_0<x_1<cdots<x_n=b;;text{and};;x_j-x_{j-1}=(b-a)/n,;;jin {1,2,cdots,n}.$$
Hence,
begin{align}suplimits_{P_n}L(|f|,P_n)&= limlimits_{nto infty}sum^{n}_{j=1}|f(t_j)|(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}sum^{n}_{j=1}(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(x_n-x_{0})\&= dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(b-a)\&= dfrac{1}{2}|f(x_0)|(b-a)\&>0end{align}










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
    $endgroup$
    – Michael Burr
    Jan 15 at 22:59












  • $begingroup$
    @Michael Burr: I'll do that!
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:02














1












1








1


1



$begingroup$


Can you help me check if this proof is correct? If not, kindly provide a better proof




Prove that if $f$ is continuous at $x_0in [a,b]$ and $f(x_0)neq 0,$ then $suplimits_{P}L(|f|,P)>0$




Suppose $a<b$. For $epsilon=|f(x_0)|/2,$ there exists $delta>0$ such that $$|f(x)|>dfrac{1}{2}|f(x_0)|,;;text{whenever};;xin(x_0-delta,x_0+delta).$$
Choose a uniform partition $P_n$, for each $n,$ such that
$$a=x_0<x_1<cdots<x_n=b;;text{and};;x_j-x_{j-1}=(b-a)/n,;;jin {1,2,cdots,n}.$$
Hence,
begin{align}suplimits_{P_n}L(|f|,P_n)&= limlimits_{nto infty}sum^{n}_{j=1}|f(t_j)|(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}sum^{n}_{j=1}(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(x_n-x_{0})\&= dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(b-a)\&= dfrac{1}{2}|f(x_0)|(b-a)\&>0end{align}










share|cite|improve this question











$endgroup$




Can you help me check if this proof is correct? If not, kindly provide a better proof




Prove that if $f$ is continuous at $x_0in [a,b]$ and $f(x_0)neq 0,$ then $suplimits_{P}L(|f|,P)>0$




Suppose $a<b$. For $epsilon=|f(x_0)|/2,$ there exists $delta>0$ such that $$|f(x)|>dfrac{1}{2}|f(x_0)|,;;text{whenever};;xin(x_0-delta,x_0+delta).$$
Choose a uniform partition $P_n$, for each $n,$ such that
$$a=x_0<x_1<cdots<x_n=b;;text{and};;x_j-x_{j-1}=(b-a)/n,;;jin {1,2,cdots,n}.$$
Hence,
begin{align}suplimits_{P_n}L(|f|,P_n)&= limlimits_{nto infty}sum^{n}_{j=1}|f(t_j)|(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}sum^{n}_{j=1}(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(x_n-x_{0})\&= dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(b-a)\&= dfrac{1}{2}|f(x_0)|(b-a)\&>0end{align}







real-analysis integration analysis proof-verification riemann-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 5:18







Omojola Micheal

















asked Jan 15 at 22:53









Omojola MichealOmojola Micheal

1,853324




1,853324








  • 1




    $begingroup$
    Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
    $endgroup$
    – Michael Burr
    Jan 15 at 22:59












  • $begingroup$
    @Michael Burr: I'll do that!
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:02














  • 1




    $begingroup$
    Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
    $endgroup$
    – Michael Burr
    Jan 15 at 22:59












  • $begingroup$
    @Michael Burr: I'll do that!
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:02








1




1




$begingroup$
Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
$endgroup$
– Michael Burr
Jan 15 at 22:59






$begingroup$
Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
$endgroup$
– Michael Burr
Jan 15 at 22:59














$begingroup$
@Michael Burr: I'll do that!
$endgroup$
– Omojola Micheal
Jan 15 at 23:02




$begingroup$
@Michael Burr: I'll do that!
$endgroup$
– Omojola Micheal
Jan 15 at 23:02










1 Answer
1






active

oldest

votes


















0












$begingroup$

No, it is not correct. That inequality containg the second $geqslant$ doesn't hold; you seem to be assuming here that each $m_j$ is greter than or equal to $frac12bigllvert f(x_0)bigrrvert$, but that is not true.



Note that you only have to proved an example of one partition $P_0$ such that $Lbigl(lvert frvert,P_0bigr)>0$. Then it will follow automatically that $displaystylesup_PLbigl(lvert frvert,Pbigr)>0$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Okay, let me edit it.
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:04










  • $begingroup$
    Please, how about now?
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:05










  • $begingroup$
    Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
    $endgroup$
    – José Carlos Santos
    Jan 15 at 23:07










  • $begingroup$
    So, what should I do?
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:10










  • $begingroup$
    If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
    $endgroup$
    – José Carlos Santos
    Jan 15 at 23:12













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075081%2fprove-that-if-f-is-continuous-at-x-0-in-a-b-and-fx-0-neq-0-then-sup%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

No, it is not correct. That inequality containg the second $geqslant$ doesn't hold; you seem to be assuming here that each $m_j$ is greter than or equal to $frac12bigllvert f(x_0)bigrrvert$, but that is not true.



Note that you only have to proved an example of one partition $P_0$ such that $Lbigl(lvert frvert,P_0bigr)>0$. Then it will follow automatically that $displaystylesup_PLbigl(lvert frvert,Pbigr)>0$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Okay, let me edit it.
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:04










  • $begingroup$
    Please, how about now?
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:05










  • $begingroup$
    Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
    $endgroup$
    – José Carlos Santos
    Jan 15 at 23:07










  • $begingroup$
    So, what should I do?
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:10










  • $begingroup$
    If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
    $endgroup$
    – José Carlos Santos
    Jan 15 at 23:12


















0












$begingroup$

No, it is not correct. That inequality containg the second $geqslant$ doesn't hold; you seem to be assuming here that each $m_j$ is greter than or equal to $frac12bigllvert f(x_0)bigrrvert$, but that is not true.



Note that you only have to proved an example of one partition $P_0$ such that $Lbigl(lvert frvert,P_0bigr)>0$. Then it will follow automatically that $displaystylesup_PLbigl(lvert frvert,Pbigr)>0$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Okay, let me edit it.
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:04










  • $begingroup$
    Please, how about now?
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:05










  • $begingroup$
    Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
    $endgroup$
    – José Carlos Santos
    Jan 15 at 23:07










  • $begingroup$
    So, what should I do?
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:10










  • $begingroup$
    If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
    $endgroup$
    – José Carlos Santos
    Jan 15 at 23:12
















0












0








0





$begingroup$

No, it is not correct. That inequality containg the second $geqslant$ doesn't hold; you seem to be assuming here that each $m_j$ is greter than or equal to $frac12bigllvert f(x_0)bigrrvert$, but that is not true.



Note that you only have to proved an example of one partition $P_0$ such that $Lbigl(lvert frvert,P_0bigr)>0$. Then it will follow automatically that $displaystylesup_PLbigl(lvert frvert,Pbigr)>0$.






share|cite|improve this answer









$endgroup$



No, it is not correct. That inequality containg the second $geqslant$ doesn't hold; you seem to be assuming here that each $m_j$ is greter than or equal to $frac12bigllvert f(x_0)bigrrvert$, but that is not true.



Note that you only have to proved an example of one partition $P_0$ such that $Lbigl(lvert frvert,P_0bigr)>0$. Then it will follow automatically that $displaystylesup_PLbigl(lvert frvert,Pbigr)>0$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 15 at 23:01









José Carlos SantosJosé Carlos Santos

159k22126231




159k22126231












  • $begingroup$
    Okay, let me edit it.
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:04










  • $begingroup$
    Please, how about now?
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:05










  • $begingroup$
    Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
    $endgroup$
    – José Carlos Santos
    Jan 15 at 23:07










  • $begingroup$
    So, what should I do?
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:10










  • $begingroup$
    If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
    $endgroup$
    – José Carlos Santos
    Jan 15 at 23:12




















  • $begingroup$
    Okay, let me edit it.
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:04










  • $begingroup$
    Please, how about now?
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:05










  • $begingroup$
    Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
    $endgroup$
    – José Carlos Santos
    Jan 15 at 23:07










  • $begingroup$
    So, what should I do?
    $endgroup$
    – Omojola Micheal
    Jan 15 at 23:10










  • $begingroup$
    If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
    $endgroup$
    – José Carlos Santos
    Jan 15 at 23:12


















$begingroup$
Okay, let me edit it.
$endgroup$
– Omojola Micheal
Jan 15 at 23:04




$begingroup$
Okay, let me edit it.
$endgroup$
– Omojola Micheal
Jan 15 at 23:04












$begingroup$
Please, how about now?
$endgroup$
– Omojola Micheal
Jan 15 at 23:05




$begingroup$
Please, how about now?
$endgroup$
– Omojola Micheal
Jan 15 at 23:05












$begingroup$
Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
$endgroup$
– José Carlos Santos
Jan 15 at 23:07




$begingroup$
Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
$endgroup$
– José Carlos Santos
Jan 15 at 23:07












$begingroup$
So, what should I do?
$endgroup$
– Omojola Micheal
Jan 15 at 23:10




$begingroup$
So, what should I do?
$endgroup$
– Omojola Micheal
Jan 15 at 23:10












$begingroup$
If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
$endgroup$
– José Carlos Santos
Jan 15 at 23:12






$begingroup$
If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
$endgroup$
– José Carlos Santos
Jan 15 at 23:12




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075081%2fprove-that-if-f-is-continuous-at-x-0-in-a-b-and-fx-0-neq-0-then-sup%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

What does “Dominus providebit” mean?

Antonio Litta Visconti Arese