Given the time of the $n$:th arrival, find $E(S_1|S_n)$.












0












$begingroup$



Let $S_1,S_2...$ be the arrival times of a Poisson process with
parameter $lambda$. Given the time of the $n$:th arrival, find
$E(S_1|S_n)$.




I know that $S_n=X_1+X_2+...+X_n$ where $X_i$ are the arrival times. Conditioning on $S_n$ I get



$$E(S_1|S_n=t)=E(S_1|S_{n-1}+X_n=t),$$



I'm not sure how to rewrite this. First I thought that



$$E(X_1 | X_1+...+X_n=t)$$



would be a good idea since all the $X_i$ are independent of eachother. But ofcourse $X_1$ can't be independent of itself.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    By the exchangeability of the family $(X_k)$, $E(X_kmid S_n)$ does not depend on $1leqslant kleqslant n$. Since $E(S_nmid S_n)=S_n$, this remark yields $E(X_kmid S_n)=frac1nS_n$ for every $1leqslant kleqslant n$, in particular $E(S_1mid S_n)=frac1nS_n$.
    $endgroup$
    – Did
    Jan 15 at 23:00












  • $begingroup$
    $X_i$ are the inter-arrival times.
    $endgroup$
    – Aditya Dua
    Jan 15 at 23:46
















0












$begingroup$



Let $S_1,S_2...$ be the arrival times of a Poisson process with
parameter $lambda$. Given the time of the $n$:th arrival, find
$E(S_1|S_n)$.




I know that $S_n=X_1+X_2+...+X_n$ where $X_i$ are the arrival times. Conditioning on $S_n$ I get



$$E(S_1|S_n=t)=E(S_1|S_{n-1}+X_n=t),$$



I'm not sure how to rewrite this. First I thought that



$$E(X_1 | X_1+...+X_n=t)$$



would be a good idea since all the $X_i$ are independent of eachother. But ofcourse $X_1$ can't be independent of itself.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    By the exchangeability of the family $(X_k)$, $E(X_kmid S_n)$ does not depend on $1leqslant kleqslant n$. Since $E(S_nmid S_n)=S_n$, this remark yields $E(X_kmid S_n)=frac1nS_n$ for every $1leqslant kleqslant n$, in particular $E(S_1mid S_n)=frac1nS_n$.
    $endgroup$
    – Did
    Jan 15 at 23:00












  • $begingroup$
    $X_i$ are the inter-arrival times.
    $endgroup$
    – Aditya Dua
    Jan 15 at 23:46














0












0








0





$begingroup$



Let $S_1,S_2...$ be the arrival times of a Poisson process with
parameter $lambda$. Given the time of the $n$:th arrival, find
$E(S_1|S_n)$.




I know that $S_n=X_1+X_2+...+X_n$ where $X_i$ are the arrival times. Conditioning on $S_n$ I get



$$E(S_1|S_n=t)=E(S_1|S_{n-1}+X_n=t),$$



I'm not sure how to rewrite this. First I thought that



$$E(X_1 | X_1+...+X_n=t)$$



would be a good idea since all the $X_i$ are independent of eachother. But ofcourse $X_1$ can't be independent of itself.










share|cite|improve this question









$endgroup$





Let $S_1,S_2...$ be the arrival times of a Poisson process with
parameter $lambda$. Given the time of the $n$:th arrival, find
$E(S_1|S_n)$.




I know that $S_n=X_1+X_2+...+X_n$ where $X_i$ are the arrival times. Conditioning on $S_n$ I get



$$E(S_1|S_n=t)=E(S_1|S_{n-1}+X_n=t),$$



I'm not sure how to rewrite this. First I thought that



$$E(X_1 | X_1+...+X_n=t)$$



would be a good idea since all the $X_i$ are independent of eachother. But ofcourse $X_1$ can't be independent of itself.







probability conditional-expectation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 15 at 22:33









ParsevalParseval

2,8821718




2,8821718








  • 2




    $begingroup$
    By the exchangeability of the family $(X_k)$, $E(X_kmid S_n)$ does not depend on $1leqslant kleqslant n$. Since $E(S_nmid S_n)=S_n$, this remark yields $E(X_kmid S_n)=frac1nS_n$ for every $1leqslant kleqslant n$, in particular $E(S_1mid S_n)=frac1nS_n$.
    $endgroup$
    – Did
    Jan 15 at 23:00












  • $begingroup$
    $X_i$ are the inter-arrival times.
    $endgroup$
    – Aditya Dua
    Jan 15 at 23:46














  • 2




    $begingroup$
    By the exchangeability of the family $(X_k)$, $E(X_kmid S_n)$ does not depend on $1leqslant kleqslant n$. Since $E(S_nmid S_n)=S_n$, this remark yields $E(X_kmid S_n)=frac1nS_n$ for every $1leqslant kleqslant n$, in particular $E(S_1mid S_n)=frac1nS_n$.
    $endgroup$
    – Did
    Jan 15 at 23:00












  • $begingroup$
    $X_i$ are the inter-arrival times.
    $endgroup$
    – Aditya Dua
    Jan 15 at 23:46








2




2




$begingroup$
By the exchangeability of the family $(X_k)$, $E(X_kmid S_n)$ does not depend on $1leqslant kleqslant n$. Since $E(S_nmid S_n)=S_n$, this remark yields $E(X_kmid S_n)=frac1nS_n$ for every $1leqslant kleqslant n$, in particular $E(S_1mid S_n)=frac1nS_n$.
$endgroup$
– Did
Jan 15 at 23:00






$begingroup$
By the exchangeability of the family $(X_k)$, $E(X_kmid S_n)$ does not depend on $1leqslant kleqslant n$. Since $E(S_nmid S_n)=S_n$, this remark yields $E(X_kmid S_n)=frac1nS_n$ for every $1leqslant kleqslant n$, in particular $E(S_1mid S_n)=frac1nS_n$.
$endgroup$
– Did
Jan 15 at 23:00














$begingroup$
$X_i$ are the inter-arrival times.
$endgroup$
– Aditya Dua
Jan 15 at 23:46




$begingroup$
$X_i$ are the inter-arrival times.
$endgroup$
– Aditya Dua
Jan 15 at 23:46










1 Answer
1






active

oldest

votes


















2












$begingroup$

$$S_n = sum_{i=1}^n X_i = X_1 + sum_{i=2}^n X_i = S_1 + sum_{i=2}^n X_i$$.



Thus, $$mathbb{E}[S_n|S_n] = mathbb{E}[S_1|S_n] + sum_{i=2}^n mathbb{E}[X_i|S_n]$$, implying



$$mathbb{E}[S_1|S_n] = S_n - sum_{i=2}^n mathbb{E}[X_i|S_n]$$.



As @Did pointed out, by symmetry $mathbb{E}[X_i|S_n]$ is independent of $i$ for $1 leq i leq n$, implying $nmathbb{E}[X_i|S_n] = mathbb{E}[S_n|S_n] = S_n$, i.e. $mathbb{E}[X_i|S_n] = {S_n over n}$.



Substituting back, we get:
$$mathbb{E}[S_1|S_n] = S_n - (n-1){S_n over n} = {S_n over n}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075058%2fgiven-the-time-of-the-nth-arrival-find-es-1s-n%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    $$S_n = sum_{i=1}^n X_i = X_1 + sum_{i=2}^n X_i = S_1 + sum_{i=2}^n X_i$$.



    Thus, $$mathbb{E}[S_n|S_n] = mathbb{E}[S_1|S_n] + sum_{i=2}^n mathbb{E}[X_i|S_n]$$, implying



    $$mathbb{E}[S_1|S_n] = S_n - sum_{i=2}^n mathbb{E}[X_i|S_n]$$.



    As @Did pointed out, by symmetry $mathbb{E}[X_i|S_n]$ is independent of $i$ for $1 leq i leq n$, implying $nmathbb{E}[X_i|S_n] = mathbb{E}[S_n|S_n] = S_n$, i.e. $mathbb{E}[X_i|S_n] = {S_n over n}$.



    Substituting back, we get:
    $$mathbb{E}[S_1|S_n] = S_n - (n-1){S_n over n} = {S_n over n}$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      $$S_n = sum_{i=1}^n X_i = X_1 + sum_{i=2}^n X_i = S_1 + sum_{i=2}^n X_i$$.



      Thus, $$mathbb{E}[S_n|S_n] = mathbb{E}[S_1|S_n] + sum_{i=2}^n mathbb{E}[X_i|S_n]$$, implying



      $$mathbb{E}[S_1|S_n] = S_n - sum_{i=2}^n mathbb{E}[X_i|S_n]$$.



      As @Did pointed out, by symmetry $mathbb{E}[X_i|S_n]$ is independent of $i$ for $1 leq i leq n$, implying $nmathbb{E}[X_i|S_n] = mathbb{E}[S_n|S_n] = S_n$, i.e. $mathbb{E}[X_i|S_n] = {S_n over n}$.



      Substituting back, we get:
      $$mathbb{E}[S_1|S_n] = S_n - (n-1){S_n over n} = {S_n over n}$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        $$S_n = sum_{i=1}^n X_i = X_1 + sum_{i=2}^n X_i = S_1 + sum_{i=2}^n X_i$$.



        Thus, $$mathbb{E}[S_n|S_n] = mathbb{E}[S_1|S_n] + sum_{i=2}^n mathbb{E}[X_i|S_n]$$, implying



        $$mathbb{E}[S_1|S_n] = S_n - sum_{i=2}^n mathbb{E}[X_i|S_n]$$.



        As @Did pointed out, by symmetry $mathbb{E}[X_i|S_n]$ is independent of $i$ for $1 leq i leq n$, implying $nmathbb{E}[X_i|S_n] = mathbb{E}[S_n|S_n] = S_n$, i.e. $mathbb{E}[X_i|S_n] = {S_n over n}$.



        Substituting back, we get:
        $$mathbb{E}[S_1|S_n] = S_n - (n-1){S_n over n} = {S_n over n}$$






        share|cite|improve this answer









        $endgroup$



        $$S_n = sum_{i=1}^n X_i = X_1 + sum_{i=2}^n X_i = S_1 + sum_{i=2}^n X_i$$.



        Thus, $$mathbb{E}[S_n|S_n] = mathbb{E}[S_1|S_n] + sum_{i=2}^n mathbb{E}[X_i|S_n]$$, implying



        $$mathbb{E}[S_1|S_n] = S_n - sum_{i=2}^n mathbb{E}[X_i|S_n]$$.



        As @Did pointed out, by symmetry $mathbb{E}[X_i|S_n]$ is independent of $i$ for $1 leq i leq n$, implying $nmathbb{E}[X_i|S_n] = mathbb{E}[S_n|S_n] = S_n$, i.e. $mathbb{E}[X_i|S_n] = {S_n over n}$.



        Substituting back, we get:
        $$mathbb{E}[S_1|S_n] = S_n - (n-1){S_n over n} = {S_n over n}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 15 at 23:59









        Aditya DuaAditya Dua

        1,11418




        1,11418






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075058%2fgiven-the-time-of-the-nth-arrival-find-es-1s-n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?