Prove $frac{a^2b^2}{(a-c)(b-c)}+ frac{b^2c^2}{(b-a)(c-a)} + frac{c^2a^2}{(c-b)(a-b)} = ab+bc+ca$
$begingroup$
Prove $$frac{a^2b^2}{(a-c)(b-c)}+ frac{b^2c^2}{(b-a)(c-a)} + frac{c^2a^2}{(c-b)(a-b)} = ab+bc+ca$$
Can you help me to prove this equality? When I multiple left side, I get more complicated expression. Obviously I need to add something like shift for our variables or something else. I would be grateful for help.
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
Prove $$frac{a^2b^2}{(a-c)(b-c)}+ frac{b^2c^2}{(b-a)(c-a)} + frac{c^2a^2}{(c-b)(a-b)} = ab+bc+ca$$
Can you help me to prove this equality? When I multiple left side, I get more complicated expression. Obviously I need to add something like shift for our variables or something else. I would be grateful for help.
algebra-precalculus
$endgroup$
2
$begingroup$
For $a=b=c$ the RHS is $3a^2$ and the LHS is $infty$.
$endgroup$
– Dietrich Burde
Jan 22 at 19:13
$begingroup$
The Statement is true, we must assume that $$ane c,bne c,ane b$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:19
add a comment |
$begingroup$
Prove $$frac{a^2b^2}{(a-c)(b-c)}+ frac{b^2c^2}{(b-a)(c-a)} + frac{c^2a^2}{(c-b)(a-b)} = ab+bc+ca$$
Can you help me to prove this equality? When I multiple left side, I get more complicated expression. Obviously I need to add something like shift for our variables or something else. I would be grateful for help.
algebra-precalculus
$endgroup$
Prove $$frac{a^2b^2}{(a-c)(b-c)}+ frac{b^2c^2}{(b-a)(c-a)} + frac{c^2a^2}{(c-b)(a-b)} = ab+bc+ca$$
Can you help me to prove this equality? When I multiple left side, I get more complicated expression. Obviously I need to add something like shift for our variables or something else. I would be grateful for help.
algebra-precalculus
algebra-precalculus
edited Jan 22 at 21:08
StubbornAtom
6,05811239
6,05811239
asked Jan 22 at 19:11
bubblesPbubblesP
122
122
2
$begingroup$
For $a=b=c$ the RHS is $3a^2$ and the LHS is $infty$.
$endgroup$
– Dietrich Burde
Jan 22 at 19:13
$begingroup$
The Statement is true, we must assume that $$ane c,bne c,ane b$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:19
add a comment |
2
$begingroup$
For $a=b=c$ the RHS is $3a^2$ and the LHS is $infty$.
$endgroup$
– Dietrich Burde
Jan 22 at 19:13
$begingroup$
The Statement is true, we must assume that $$ane c,bne c,ane b$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:19
2
2
$begingroup$
For $a=b=c$ the RHS is $3a^2$ and the LHS is $infty$.
$endgroup$
– Dietrich Burde
Jan 22 at 19:13
$begingroup$
For $a=b=c$ the RHS is $3a^2$ and the LHS is $infty$.
$endgroup$
– Dietrich Burde
Jan 22 at 19:13
$begingroup$
The Statement is true, we must assume that $$ane c,bne c,ane b$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:19
$begingroup$
The Statement is true, we must assume that $$ane c,bne c,ane b$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:19
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: Multiply the whole thing by the product of the denominators.
$endgroup$
$begingroup$
I solved this. Thank you a lot people.
$endgroup$
– bubblesP
Jan 22 at 19:36
add a comment |
$begingroup$
Idea:
If we clear the denominators we get $$ a^2b^2(a-b) + b^2c^2(b-c)+c^2a^2(c-a)=(ab+bc+ca)(a-b)(b-c)(a-c)$$
which are polynomials of degree 3 (say on $a$) on both sides. So the identity is true if it is true of 4 different values of $a$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083573%2fprove-fraca2b2a-cb-c-fracb2c2b-ac-a-fracc2a2c-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Multiply the whole thing by the product of the denominators.
$endgroup$
$begingroup$
I solved this. Thank you a lot people.
$endgroup$
– bubblesP
Jan 22 at 19:36
add a comment |
$begingroup$
Hint: Multiply the whole thing by the product of the denominators.
$endgroup$
$begingroup$
I solved this. Thank you a lot people.
$endgroup$
– bubblesP
Jan 22 at 19:36
add a comment |
$begingroup$
Hint: Multiply the whole thing by the product of the denominators.
$endgroup$
Hint: Multiply the whole thing by the product of the denominators.
answered Jan 22 at 19:20
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
76.6k42866
76.6k42866
$begingroup$
I solved this. Thank you a lot people.
$endgroup$
– bubblesP
Jan 22 at 19:36
add a comment |
$begingroup$
I solved this. Thank you a lot people.
$endgroup$
– bubblesP
Jan 22 at 19:36
$begingroup$
I solved this. Thank you a lot people.
$endgroup$
– bubblesP
Jan 22 at 19:36
$begingroup$
I solved this. Thank you a lot people.
$endgroup$
– bubblesP
Jan 22 at 19:36
add a comment |
$begingroup$
Idea:
If we clear the denominators we get $$ a^2b^2(a-b) + b^2c^2(b-c)+c^2a^2(c-a)=(ab+bc+ca)(a-b)(b-c)(a-c)$$
which are polynomials of degree 3 (say on $a$) on both sides. So the identity is true if it is true of 4 different values of $a$
$endgroup$
add a comment |
$begingroup$
Idea:
If we clear the denominators we get $$ a^2b^2(a-b) + b^2c^2(b-c)+c^2a^2(c-a)=(ab+bc+ca)(a-b)(b-c)(a-c)$$
which are polynomials of degree 3 (say on $a$) on both sides. So the identity is true if it is true of 4 different values of $a$
$endgroup$
add a comment |
$begingroup$
Idea:
If we clear the denominators we get $$ a^2b^2(a-b) + b^2c^2(b-c)+c^2a^2(c-a)=(ab+bc+ca)(a-b)(b-c)(a-c)$$
which are polynomials of degree 3 (say on $a$) on both sides. So the identity is true if it is true of 4 different values of $a$
$endgroup$
Idea:
If we clear the denominators we get $$ a^2b^2(a-b) + b^2c^2(b-c)+c^2a^2(c-a)=(ab+bc+ca)(a-b)(b-c)(a-c)$$
which are polynomials of degree 3 (say on $a$) on both sides. So the identity is true if it is true of 4 different values of $a$
answered Jan 22 at 19:28
greedoidgreedoid
45k1157112
45k1157112
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083573%2fprove-fraca2b2a-cb-c-fracb2c2b-ac-a-fracc2a2c-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
For $a=b=c$ the RHS is $3a^2$ and the LHS is $infty$.
$endgroup$
– Dietrich Burde
Jan 22 at 19:13
$begingroup$
The Statement is true, we must assume that $$ane c,bne c,ane b$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:19