If $f:mathbb{R}tomathbb{R}$ is continuous, and $f(mathbb{Q})subsetmathbb{N}$, then is $f$ unbounded,...
$begingroup$
Suppose $f:mathbb{R}tomathbb{R}$ is a continuous function such that $ f(mathbb{Q})subsetmathbb{N}$. What can be said about $f$? Is it (1) unbounded, (2) constant, or (3) non-constant bounded?
I think it should be constant, as $mathbb{Q}$ is dense in $mathbb{R}$.
Kindly help! Thanks & Regards
real-analysis functions
$endgroup$
add a comment |
$begingroup$
Suppose $f:mathbb{R}tomathbb{R}$ is a continuous function such that $ f(mathbb{Q})subsetmathbb{N}$. What can be said about $f$? Is it (1) unbounded, (2) constant, or (3) non-constant bounded?
I think it should be constant, as $mathbb{Q}$ is dense in $mathbb{R}$.
Kindly help! Thanks & Regards
real-analysis functions
$endgroup$
3
$begingroup$
You are right .
$endgroup$
– Hagen von Eitzen
Jan 22 at 18:54
1
$begingroup$
Yes. By continuity, $f(mathbb{R})=f(overline{mathbb{Q}})subseteqoverline{f(mathbb{Q})}=mathbb{N}$. Since $f(mathbb{Q})$ is a non-empty connected subset of $mathbb{N}$, it is a singleton. Therefore $f$ is constant.
$endgroup$
– Sangchul Lee
Jan 22 at 19:22
add a comment |
$begingroup$
Suppose $f:mathbb{R}tomathbb{R}$ is a continuous function such that $ f(mathbb{Q})subsetmathbb{N}$. What can be said about $f$? Is it (1) unbounded, (2) constant, or (3) non-constant bounded?
I think it should be constant, as $mathbb{Q}$ is dense in $mathbb{R}$.
Kindly help! Thanks & Regards
real-analysis functions
$endgroup$
Suppose $f:mathbb{R}tomathbb{R}$ is a continuous function such that $ f(mathbb{Q})subsetmathbb{N}$. What can be said about $f$? Is it (1) unbounded, (2) constant, or (3) non-constant bounded?
I think it should be constant, as $mathbb{Q}$ is dense in $mathbb{R}$.
Kindly help! Thanks & Regards
real-analysis functions
real-analysis functions
edited Jan 22 at 19:17
Blue
48.6k870156
48.6k870156
asked Jan 22 at 18:51
Devendra Singh RanaDevendra Singh Rana
7751416
7751416
3
$begingroup$
You are right .
$endgroup$
– Hagen von Eitzen
Jan 22 at 18:54
1
$begingroup$
Yes. By continuity, $f(mathbb{R})=f(overline{mathbb{Q}})subseteqoverline{f(mathbb{Q})}=mathbb{N}$. Since $f(mathbb{Q})$ is a non-empty connected subset of $mathbb{N}$, it is a singleton. Therefore $f$ is constant.
$endgroup$
– Sangchul Lee
Jan 22 at 19:22
add a comment |
3
$begingroup$
You are right .
$endgroup$
– Hagen von Eitzen
Jan 22 at 18:54
1
$begingroup$
Yes. By continuity, $f(mathbb{R})=f(overline{mathbb{Q}})subseteqoverline{f(mathbb{Q})}=mathbb{N}$. Since $f(mathbb{Q})$ is a non-empty connected subset of $mathbb{N}$, it is a singleton. Therefore $f$ is constant.
$endgroup$
– Sangchul Lee
Jan 22 at 19:22
3
3
$begingroup$
You are right .
$endgroup$
– Hagen von Eitzen
Jan 22 at 18:54
$begingroup$
You are right .
$endgroup$
– Hagen von Eitzen
Jan 22 at 18:54
1
1
$begingroup$
Yes. By continuity, $f(mathbb{R})=f(overline{mathbb{Q}})subseteqoverline{f(mathbb{Q})}=mathbb{N}$. Since $f(mathbb{Q})$ is a non-empty connected subset of $mathbb{N}$, it is a singleton. Therefore $f$ is constant.
$endgroup$
– Sangchul Lee
Jan 22 at 19:22
$begingroup$
Yes. By continuity, $f(mathbb{R})=f(overline{mathbb{Q}})subseteqoverline{f(mathbb{Q})}=mathbb{N}$. Since $f(mathbb{Q})$ is a non-empty connected subset of $mathbb{N}$, it is a singleton. Therefore $f$ is constant.
$endgroup$
– Sangchul Lee
Jan 22 at 19:22
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, $f$ must be a constant. Suppose not. Pick $q_1, q_2 in mathbb{Q}$ such that $f(q_1) > f(q_2)$. Without loss of generality, assume $q_1 < q_2$. Pick any noninteger $y$ between $f(q_1)$ and $f(q_2)$. Then by intermediate value theorem, there exists $x in (q_1, q_2)$ such that $f(x) = y$. Any rational number sufficiently close to $x$ should not take integer value, a contradiction.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083545%2fif-f-mathbbr-to-mathbbr-is-continuous-and-f-mathbbq-subset-mathbbn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, $f$ must be a constant. Suppose not. Pick $q_1, q_2 in mathbb{Q}$ such that $f(q_1) > f(q_2)$. Without loss of generality, assume $q_1 < q_2$. Pick any noninteger $y$ between $f(q_1)$ and $f(q_2)$. Then by intermediate value theorem, there exists $x in (q_1, q_2)$ such that $f(x) = y$. Any rational number sufficiently close to $x$ should not take integer value, a contradiction.
$endgroup$
add a comment |
$begingroup$
Yes, $f$ must be a constant. Suppose not. Pick $q_1, q_2 in mathbb{Q}$ such that $f(q_1) > f(q_2)$. Without loss of generality, assume $q_1 < q_2$. Pick any noninteger $y$ between $f(q_1)$ and $f(q_2)$. Then by intermediate value theorem, there exists $x in (q_1, q_2)$ such that $f(x) = y$. Any rational number sufficiently close to $x$ should not take integer value, a contradiction.
$endgroup$
add a comment |
$begingroup$
Yes, $f$ must be a constant. Suppose not. Pick $q_1, q_2 in mathbb{Q}$ such that $f(q_1) > f(q_2)$. Without loss of generality, assume $q_1 < q_2$. Pick any noninteger $y$ between $f(q_1)$ and $f(q_2)$. Then by intermediate value theorem, there exists $x in (q_1, q_2)$ such that $f(x) = y$. Any rational number sufficiently close to $x$ should not take integer value, a contradiction.
$endgroup$
Yes, $f$ must be a constant. Suppose not. Pick $q_1, q_2 in mathbb{Q}$ such that $f(q_1) > f(q_2)$. Without loss of generality, assume $q_1 < q_2$. Pick any noninteger $y$ between $f(q_1)$ and $f(q_2)$. Then by intermediate value theorem, there exists $x in (q_1, q_2)$ such that $f(x) = y$. Any rational number sufficiently close to $x$ should not take integer value, a contradiction.
answered Jan 22 at 19:08
user295959user295959
664310
664310
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083545%2fif-f-mathbbr-to-mathbbr-is-continuous-and-f-mathbbq-subset-mathbbn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
You are right .
$endgroup$
– Hagen von Eitzen
Jan 22 at 18:54
1
$begingroup$
Yes. By continuity, $f(mathbb{R})=f(overline{mathbb{Q}})subseteqoverline{f(mathbb{Q})}=mathbb{N}$. Since $f(mathbb{Q})$ is a non-empty connected subset of $mathbb{N}$, it is a singleton. Therefore $f$ is constant.
$endgroup$
– Sangchul Lee
Jan 22 at 19:22