How to prove that$D<0.5 T;$?












0












$begingroup$


We have the formula of obligation duration:



$$D = frac{C}{P} (1- frac{1+Tr}{(1+r)^{T}}) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2},$$



Here:



$rin(0,1)$,



$Tin mathbb N$ (number of time periods),



$Nin mathbb N$ (obligation nominal value),



$P in mathbb N$ (obligation price), $C=cN, cin(0,1).$



Check if $D<dfrac{T}{2}.$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    We have the formula of obligation duration:



    $$D = frac{C}{P} (1- frac{1+Tr}{(1+r)^{T}}) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2},$$



    Here:



    $rin(0,1)$,



    $Tin mathbb N$ (number of time periods),



    $Nin mathbb N$ (obligation nominal value),



    $P in mathbb N$ (obligation price), $C=cN, cin(0,1).$



    Check if $D<dfrac{T}{2}.$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      We have the formula of obligation duration:



      $$D = frac{C}{P} (1- frac{1+Tr}{(1+r)^{T}}) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2},$$



      Here:



      $rin(0,1)$,



      $Tin mathbb N$ (number of time periods),



      $Nin mathbb N$ (obligation nominal value),



      $P in mathbb N$ (obligation price), $C=cN, cin(0,1).$



      Check if $D<dfrac{T}{2}.$










      share|cite|improve this question











      $endgroup$




      We have the formula of obligation duration:



      $$D = frac{C}{P} (1- frac{1+Tr}{(1+r)^{T}}) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2},$$



      Here:



      $rin(0,1)$,



      $Tin mathbb N$ (number of time periods),



      $Nin mathbb N$ (obligation nominal value),



      $P in mathbb N$ (obligation price), $C=cN, cin(0,1).$



      Check if $D<dfrac{T}{2}.$







      sequences-and-series inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 20 at 15:36









      jordan_glen

      1




      1










      asked Jan 20 at 15:33









      PhilipPhilip

      766




      766






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Your assumption is false.



          Counterexample: Define the following numbers
          $$r = frac{1}{2}, $$
          $$T = 1, $$
          $$N = 1, $$
          $$P = 1, $$
          $$C = frac{1}{2}cdot 1 = frac{1}{2}. $$



          Then
          begin{align*}D &= frac{C}{P} left(1- frac{1+Tr}{(1+r)^{T}}right) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2}\
          &= frac{1}{2}left(1 - frac{1 + 1/2}{1 + 1/2}right)cdot frac{1+ 1/2}{1/4} + frac{1/2 + 1}{1}cdot frac{1}{(1+ 1/2)^2}\
          &=frac{1}{1+1/2} = frac{2}{3}.
          end{align*}



          Once $$D = frac{2}{3}> frac{1}{2} = frac{T}{2},$$ we concluded that $$D< frac{T}{2}$$ is, in general, false.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080724%2fhow-to-prove-thatd0-5-t%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Your assumption is false.



            Counterexample: Define the following numbers
            $$r = frac{1}{2}, $$
            $$T = 1, $$
            $$N = 1, $$
            $$P = 1, $$
            $$C = frac{1}{2}cdot 1 = frac{1}{2}. $$



            Then
            begin{align*}D &= frac{C}{P} left(1- frac{1+Tr}{(1+r)^{T}}right) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2}\
            &= frac{1}{2}left(1 - frac{1 + 1/2}{1 + 1/2}right)cdot frac{1+ 1/2}{1/4} + frac{1/2 + 1}{1}cdot frac{1}{(1+ 1/2)^2}\
            &=frac{1}{1+1/2} = frac{2}{3}.
            end{align*}



            Once $$D = frac{2}{3}> frac{1}{2} = frac{T}{2},$$ we concluded that $$D< frac{T}{2}$$ is, in general, false.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Your assumption is false.



              Counterexample: Define the following numbers
              $$r = frac{1}{2}, $$
              $$T = 1, $$
              $$N = 1, $$
              $$P = 1, $$
              $$C = frac{1}{2}cdot 1 = frac{1}{2}. $$



              Then
              begin{align*}D &= frac{C}{P} left(1- frac{1+Tr}{(1+r)^{T}}right) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2}\
              &= frac{1}{2}left(1 - frac{1 + 1/2}{1 + 1/2}right)cdot frac{1+ 1/2}{1/4} + frac{1/2 + 1}{1}cdot frac{1}{(1+ 1/2)^2}\
              &=frac{1}{1+1/2} = frac{2}{3}.
              end{align*}



              Once $$D = frac{2}{3}> frac{1}{2} = frac{T}{2},$$ we concluded that $$D< frac{T}{2}$$ is, in general, false.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Your assumption is false.



                Counterexample: Define the following numbers
                $$r = frac{1}{2}, $$
                $$T = 1, $$
                $$N = 1, $$
                $$P = 1, $$
                $$C = frac{1}{2}cdot 1 = frac{1}{2}. $$



                Then
                begin{align*}D &= frac{C}{P} left(1- frac{1+Tr}{(1+r)^{T}}right) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2}\
                &= frac{1}{2}left(1 - frac{1 + 1/2}{1 + 1/2}right)cdot frac{1+ 1/2}{1/4} + frac{1/2 + 1}{1}cdot frac{1}{(1+ 1/2)^2}\
                &=frac{1}{1+1/2} = frac{2}{3}.
                end{align*}



                Once $$D = frac{2}{3}> frac{1}{2} = frac{T}{2},$$ we concluded that $$D< frac{T}{2}$$ is, in general, false.






                share|cite|improve this answer









                $endgroup$



                Your assumption is false.



                Counterexample: Define the following numbers
                $$r = frac{1}{2}, $$
                $$T = 1, $$
                $$N = 1, $$
                $$P = 1, $$
                $$C = frac{1}{2}cdot 1 = frac{1}{2}. $$



                Then
                begin{align*}D &= frac{C}{P} left(1- frac{1+Tr}{(1+r)^{T}}right) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2}\
                &= frac{1}{2}left(1 - frac{1 + 1/2}{1 + 1/2}right)cdot frac{1+ 1/2}{1/4} + frac{1/2 + 1}{1}cdot frac{1}{(1+ 1/2)^2}\
                &=frac{1}{1+1/2} = frac{2}{3}.
                end{align*}



                Once $$D = frac{2}{3}> frac{1}{2} = frac{T}{2},$$ we concluded that $$D< frac{T}{2}$$ is, in general, false.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 20 at 16:58









                Matheus ManzattoMatheus Manzatto

                1,3951524




                1,3951524






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080724%2fhow-to-prove-thatd0-5-t%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    The Binding of Isaac: Rebirth/Afterbirth

                    What does “Dominus providebit” mean?