How to prove that$D<0.5 T;$?
$begingroup$
We have the formula of obligation duration:
$$D = frac{C}{P} (1- frac{1+Tr}{(1+r)^{T}}) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2},$$
Here:
$rin(0,1)$,
$Tin mathbb N$ (number of time periods),
$Nin mathbb N$ (obligation nominal value),
$P in mathbb N$ (obligation price), $C=cN, cin(0,1).$
Check if $D<dfrac{T}{2}.$
sequences-and-series inequality
$endgroup$
add a comment |
$begingroup$
We have the formula of obligation duration:
$$D = frac{C}{P} (1- frac{1+Tr}{(1+r)^{T}}) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2},$$
Here:
$rin(0,1)$,
$Tin mathbb N$ (number of time periods),
$Nin mathbb N$ (obligation nominal value),
$P in mathbb N$ (obligation price), $C=cN, cin(0,1).$
Check if $D<dfrac{T}{2}.$
sequences-and-series inequality
$endgroup$
add a comment |
$begingroup$
We have the formula of obligation duration:
$$D = frac{C}{P} (1- frac{1+Tr}{(1+r)^{T}}) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2},$$
Here:
$rin(0,1)$,
$Tin mathbb N$ (number of time periods),
$Nin mathbb N$ (obligation nominal value),
$P in mathbb N$ (obligation price), $C=cN, cin(0,1).$
Check if $D<dfrac{T}{2}.$
sequences-and-series inequality
$endgroup$
We have the formula of obligation duration:
$$D = frac{C}{P} (1- frac{1+Tr}{(1+r)^{T}}) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2},$$
Here:
$rin(0,1)$,
$Tin mathbb N$ (number of time periods),
$Nin mathbb N$ (obligation nominal value),
$P in mathbb N$ (obligation price), $C=cN, cin(0,1).$
Check if $D<dfrac{T}{2}.$
sequences-and-series inequality
sequences-and-series inequality
edited Jan 20 at 15:36
jordan_glen
1
1
asked Jan 20 at 15:33
PhilipPhilip
766
766
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your assumption is false.
Counterexample: Define the following numbers
$$r = frac{1}{2}, $$
$$T = 1, $$
$$N = 1, $$
$$P = 1, $$
$$C = frac{1}{2}cdot 1 = frac{1}{2}. $$
Then
begin{align*}D &= frac{C}{P} left(1- frac{1+Tr}{(1+r)^{T}}right) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2}\
&= frac{1}{2}left(1 - frac{1 + 1/2}{1 + 1/2}right)cdot frac{1+ 1/2}{1/4} + frac{1/2 + 1}{1}cdot frac{1}{(1+ 1/2)^2}\
&=frac{1}{1+1/2} = frac{2}{3}.
end{align*}
Once $$D = frac{2}{3}> frac{1}{2} = frac{T}{2},$$ we concluded that $$D< frac{T}{2}$$ is, in general, false.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080724%2fhow-to-prove-thatd0-5-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your assumption is false.
Counterexample: Define the following numbers
$$r = frac{1}{2}, $$
$$T = 1, $$
$$N = 1, $$
$$P = 1, $$
$$C = frac{1}{2}cdot 1 = frac{1}{2}. $$
Then
begin{align*}D &= frac{C}{P} left(1- frac{1+Tr}{(1+r)^{T}}right) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2}\
&= frac{1}{2}left(1 - frac{1 + 1/2}{1 + 1/2}right)cdot frac{1+ 1/2}{1/4} + frac{1/2 + 1}{1}cdot frac{1}{(1+ 1/2)^2}\
&=frac{1}{1+1/2} = frac{2}{3}.
end{align*}
Once $$D = frac{2}{3}> frac{1}{2} = frac{T}{2},$$ we concluded that $$D< frac{T}{2}$$ is, in general, false.
$endgroup$
add a comment |
$begingroup$
Your assumption is false.
Counterexample: Define the following numbers
$$r = frac{1}{2}, $$
$$T = 1, $$
$$N = 1, $$
$$P = 1, $$
$$C = frac{1}{2}cdot 1 = frac{1}{2}. $$
Then
begin{align*}D &= frac{C}{P} left(1- frac{1+Tr}{(1+r)^{T}}right) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2}\
&= frac{1}{2}left(1 - frac{1 + 1/2}{1 + 1/2}right)cdot frac{1+ 1/2}{1/4} + frac{1/2 + 1}{1}cdot frac{1}{(1+ 1/2)^2}\
&=frac{1}{1+1/2} = frac{2}{3}.
end{align*}
Once $$D = frac{2}{3}> frac{1}{2} = frac{T}{2},$$ we concluded that $$D< frac{T}{2}$$ is, in general, false.
$endgroup$
add a comment |
$begingroup$
Your assumption is false.
Counterexample: Define the following numbers
$$r = frac{1}{2}, $$
$$T = 1, $$
$$N = 1, $$
$$P = 1, $$
$$C = frac{1}{2}cdot 1 = frac{1}{2}. $$
Then
begin{align*}D &= frac{C}{P} left(1- frac{1+Tr}{(1+r)^{T}}right) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2}\
&= frac{1}{2}left(1 - frac{1 + 1/2}{1 + 1/2}right)cdot frac{1+ 1/2}{1/4} + frac{1/2 + 1}{1}cdot frac{1}{(1+ 1/2)^2}\
&=frac{1}{1+1/2} = frac{2}{3}.
end{align*}
Once $$D = frac{2}{3}> frac{1}{2} = frac{T}{2},$$ we concluded that $$D< frac{T}{2}$$ is, in general, false.
$endgroup$
Your assumption is false.
Counterexample: Define the following numbers
$$r = frac{1}{2}, $$
$$T = 1, $$
$$N = 1, $$
$$P = 1, $$
$$C = frac{1}{2}cdot 1 = frac{1}{2}. $$
Then
begin{align*}D &= frac{C}{P} left(1- frac{1+Tr}{(1+r)^{T}}right) frac {1+r}{r^2} + frac {C+N}{P} frac{T}{(1+r)^2}\
&= frac{1}{2}left(1 - frac{1 + 1/2}{1 + 1/2}right)cdot frac{1+ 1/2}{1/4} + frac{1/2 + 1}{1}cdot frac{1}{(1+ 1/2)^2}\
&=frac{1}{1+1/2} = frac{2}{3}.
end{align*}
Once $$D = frac{2}{3}> frac{1}{2} = frac{T}{2},$$ we concluded that $$D< frac{T}{2}$$ is, in general, false.
answered Jan 20 at 16:58
Matheus ManzattoMatheus Manzatto
1,3951524
1,3951524
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080724%2fhow-to-prove-thatd0-5-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown