How to find limits of this volume integration?












0












$begingroup$


The question is




If $vec { F } = x hat { i } + y hat { j } + z hat { k }$ then find the value of $int int _ { S } vec { F } cdot hat { n } d s$ where $S$ is the sphere ${(x,y,z)inmathbb{R}^3 vert x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4}$.




Here if I'll calculate the answer using gauss divergence theorem, then I have to find the volume integral of the function, but how will I take the limits of the integration. Can someone help please?
Thank you.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
    $endgroup$
    – DonAntonio
    Jan 20 at 15:30


















0












$begingroup$


The question is




If $vec { F } = x hat { i } + y hat { j } + z hat { k }$ then find the value of $int int _ { S } vec { F } cdot hat { n } d s$ where $S$ is the sphere ${(x,y,z)inmathbb{R}^3 vert x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4}$.




Here if I'll calculate the answer using gauss divergence theorem, then I have to find the volume integral of the function, but how will I take the limits of the integration. Can someone help please?
Thank you.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
    $endgroup$
    – DonAntonio
    Jan 20 at 15:30
















0












0








0





$begingroup$


The question is




If $vec { F } = x hat { i } + y hat { j } + z hat { k }$ then find the value of $int int _ { S } vec { F } cdot hat { n } d s$ where $S$ is the sphere ${(x,y,z)inmathbb{R}^3 vert x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4}$.




Here if I'll calculate the answer using gauss divergence theorem, then I have to find the volume integral of the function, but how will I take the limits of the integration. Can someone help please?
Thank you.










share|cite|improve this question











$endgroup$




The question is




If $vec { F } = x hat { i } + y hat { j } + z hat { k }$ then find the value of $int int _ { S } vec { F } cdot hat { n } d s$ where $S$ is the sphere ${(x,y,z)inmathbb{R}^3 vert x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4}$.




Here if I'll calculate the answer using gauss divergence theorem, then I have to find the volume integral of the function, but how will I take the limits of the integration. Can someone help please?
Thank you.







definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 20 at 15:04









saz

80.8k860127




80.8k860127










asked Jan 20 at 14:34









HawkingoHawkingo

84




84








  • 1




    $begingroup$
    What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
    $endgroup$
    – DonAntonio
    Jan 20 at 15:30
















  • 1




    $begingroup$
    What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
    $endgroup$
    – DonAntonio
    Jan 20 at 15:30










1




1




$begingroup$
What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
$endgroup$
– DonAntonio
Jan 20 at 15:30






$begingroup$
What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
$endgroup$
– DonAntonio
Jan 20 at 15:30












1 Answer
1






active

oldest

votes


















0












$begingroup$

You have ${bf F}({bf x}):={bf x}$, and on the sphere $S$ of radius $2$ you have ${bf n}({bf x})={1over2}{bf x}$. Furthermore $$int_S{rm d}omega=4cdot4pi .$$ It follows that
$$int_S{bf F}({bf x})cdot{bf n}({bf x})>{rm d}omega=int_S{bf x}cdot{1over2}{bf x}>{rm d}omega=2cdot16pi=32pi .$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
    $endgroup$
    – Hawkingo
    Jan 21 at 18:40













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080652%2fhow-to-find-limits-of-this-volume-integration%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

You have ${bf F}({bf x}):={bf x}$, and on the sphere $S$ of radius $2$ you have ${bf n}({bf x})={1over2}{bf x}$. Furthermore $$int_S{rm d}omega=4cdot4pi .$$ It follows that
$$int_S{bf F}({bf x})cdot{bf n}({bf x})>{rm d}omega=int_S{bf x}cdot{1over2}{bf x}>{rm d}omega=2cdot16pi=32pi .$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
    $endgroup$
    – Hawkingo
    Jan 21 at 18:40


















0












$begingroup$

You have ${bf F}({bf x}):={bf x}$, and on the sphere $S$ of radius $2$ you have ${bf n}({bf x})={1over2}{bf x}$. Furthermore $$int_S{rm d}omega=4cdot4pi .$$ It follows that
$$int_S{bf F}({bf x})cdot{bf n}({bf x})>{rm d}omega=int_S{bf x}cdot{1over2}{bf x}>{rm d}omega=2cdot16pi=32pi .$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
    $endgroup$
    – Hawkingo
    Jan 21 at 18:40
















0












0








0





$begingroup$

You have ${bf F}({bf x}):={bf x}$, and on the sphere $S$ of radius $2$ you have ${bf n}({bf x})={1over2}{bf x}$. Furthermore $$int_S{rm d}omega=4cdot4pi .$$ It follows that
$$int_S{bf F}({bf x})cdot{bf n}({bf x})>{rm d}omega=int_S{bf x}cdot{1over2}{bf x}>{rm d}omega=2cdot16pi=32pi .$$






share|cite|improve this answer









$endgroup$



You have ${bf F}({bf x}):={bf x}$, and on the sphere $S$ of radius $2$ you have ${bf n}({bf x})={1over2}{bf x}$. Furthermore $$int_S{rm d}omega=4cdot4pi .$$ It follows that
$$int_S{bf F}({bf x})cdot{bf n}({bf x})>{rm d}omega=int_S{bf x}cdot{1over2}{bf x}>{rm d}omega=2cdot16pi=32pi .$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 20 at 19:52









Christian BlatterChristian Blatter

174k8115327




174k8115327












  • $begingroup$
    sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
    $endgroup$
    – Hawkingo
    Jan 21 at 18:40




















  • $begingroup$
    sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
    $endgroup$
    – Hawkingo
    Jan 21 at 18:40


















$begingroup$
sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
$endgroup$
– Hawkingo
Jan 21 at 18:40






$begingroup$
sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
$endgroup$
– Hawkingo
Jan 21 at 18:40




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080652%2fhow-to-find-limits-of-this-volume-integration%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

The Binding of Isaac: Rebirth/Afterbirth

What does “Dominus providebit” mean?