How to find limits of this volume integration?
$begingroup$
The question is
If $vec { F } = x hat { i } + y hat { j } + z hat { k }$ then find the value of $int int _ { S } vec { F } cdot hat { n } d s$ where $S$ is the sphere ${(x,y,z)inmathbb{R}^3 vert x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4}$.
Here if I'll calculate the answer using gauss divergence theorem, then I have to find the volume integral of the function, but how will I take the limits of the integration. Can someone help please?
Thank you.
definite-integrals
$endgroup$
add a comment |
$begingroup$
The question is
If $vec { F } = x hat { i } + y hat { j } + z hat { k }$ then find the value of $int int _ { S } vec { F } cdot hat { n } d s$ where $S$ is the sphere ${(x,y,z)inmathbb{R}^3 vert x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4}$.
Here if I'll calculate the answer using gauss divergence theorem, then I have to find the volume integral of the function, but how will I take the limits of the integration. Can someone help please?
Thank you.
definite-integrals
$endgroup$
1
$begingroup$
What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
$endgroup$
– DonAntonio
Jan 20 at 15:30
add a comment |
$begingroup$
The question is
If $vec { F } = x hat { i } + y hat { j } + z hat { k }$ then find the value of $int int _ { S } vec { F } cdot hat { n } d s$ where $S$ is the sphere ${(x,y,z)inmathbb{R}^3 vert x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4}$.
Here if I'll calculate the answer using gauss divergence theorem, then I have to find the volume integral of the function, but how will I take the limits of the integration. Can someone help please?
Thank you.
definite-integrals
$endgroup$
The question is
If $vec { F } = x hat { i } + y hat { j } + z hat { k }$ then find the value of $int int _ { S } vec { F } cdot hat { n } d s$ where $S$ is the sphere ${(x,y,z)inmathbb{R}^3 vert x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4}$.
Here if I'll calculate the answer using gauss divergence theorem, then I have to find the volume integral of the function, but how will I take the limits of the integration. Can someone help please?
Thank you.
definite-integrals
definite-integrals
edited Jan 20 at 15:04
saz
80.8k860127
80.8k860127
asked Jan 20 at 14:34
HawkingoHawkingo
84
84
1
$begingroup$
What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
$endgroup$
– DonAntonio
Jan 20 at 15:30
add a comment |
1
$begingroup$
What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
$endgroup$
– DonAntonio
Jan 20 at 15:30
1
1
$begingroup$
What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
$endgroup$
– DonAntonio
Jan 20 at 15:30
$begingroup$
What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
$endgroup$
– DonAntonio
Jan 20 at 15:30
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You have ${bf F}({bf x}):={bf x}$, and on the sphere $S$ of radius $2$ you have ${bf n}({bf x})={1over2}{bf x}$. Furthermore $$int_S{rm d}omega=4cdot4pi .$$ It follows that
$$int_S{bf F}({bf x})cdot{bf n}({bf x})>{rm d}omega=int_S{bf x}cdot{1over2}{bf x}>{rm d}omega=2cdot16pi=32pi .$$
$endgroup$
$begingroup$
sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
$endgroup$
– Hawkingo
Jan 21 at 18:40
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080652%2fhow-to-find-limits-of-this-volume-integration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have ${bf F}({bf x}):={bf x}$, and on the sphere $S$ of radius $2$ you have ${bf n}({bf x})={1over2}{bf x}$. Furthermore $$int_S{rm d}omega=4cdot4pi .$$ It follows that
$$int_S{bf F}({bf x})cdot{bf n}({bf x})>{rm d}omega=int_S{bf x}cdot{1over2}{bf x}>{rm d}omega=2cdot16pi=32pi .$$
$endgroup$
$begingroup$
sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
$endgroup$
– Hawkingo
Jan 21 at 18:40
add a comment |
$begingroup$
You have ${bf F}({bf x}):={bf x}$, and on the sphere $S$ of radius $2$ you have ${bf n}({bf x})={1over2}{bf x}$. Furthermore $$int_S{rm d}omega=4cdot4pi .$$ It follows that
$$int_S{bf F}({bf x})cdot{bf n}({bf x})>{rm d}omega=int_S{bf x}cdot{1over2}{bf x}>{rm d}omega=2cdot16pi=32pi .$$
$endgroup$
$begingroup$
sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
$endgroup$
– Hawkingo
Jan 21 at 18:40
add a comment |
$begingroup$
You have ${bf F}({bf x}):={bf x}$, and on the sphere $S$ of radius $2$ you have ${bf n}({bf x})={1over2}{bf x}$. Furthermore $$int_S{rm d}omega=4cdot4pi .$$ It follows that
$$int_S{bf F}({bf x})cdot{bf n}({bf x})>{rm d}omega=int_S{bf x}cdot{1over2}{bf x}>{rm d}omega=2cdot16pi=32pi .$$
$endgroup$
You have ${bf F}({bf x}):={bf x}$, and on the sphere $S$ of radius $2$ you have ${bf n}({bf x})={1over2}{bf x}$. Furthermore $$int_S{rm d}omega=4cdot4pi .$$ It follows that
$$int_S{bf F}({bf x})cdot{bf n}({bf x})>{rm d}omega=int_S{bf x}cdot{1over2}{bf x}>{rm d}omega=2cdot16pi=32pi .$$
answered Jan 20 at 19:52
Christian BlatterChristian Blatter
174k8115327
174k8115327
$begingroup$
sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
$endgroup$
– Hawkingo
Jan 21 at 18:40
add a comment |
$begingroup$
sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
$endgroup$
– Hawkingo
Jan 21 at 18:40
$begingroup$
sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
$endgroup$
– Hawkingo
Jan 21 at 18:40
$begingroup$
sir,can you provide some method in which one can derive the limits directly from the given equation of the surface without knowing the geometry of the surface or plotting a graph?
$endgroup$
– Hawkingo
Jan 21 at 18:40
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080652%2fhow-to-find-limits-of-this-volume-integration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What about $$0le rhole2;,;;0lethetale2pi;,;;0lephilepi;?$$ These is the parametrization of the given sphere in spherical coordinates...
$endgroup$
– DonAntonio
Jan 20 at 15:30