Graph of a function in the neighbourhood of $x=0$
$begingroup$
I'm new in Calculus II. Given the function $f(x)=(x^2(e^x−1))^{frac{1}{5}}$, I would like to determine a qualitative graph of the function in the neighbourhood of x=0. I know that there might be an inflection point in x=0, but I'm stuck as I don't really know how to proceed. Should I calculate the second derivative in $x=0$?
calculus functions derivatives
$endgroup$
add a comment |
$begingroup$
I'm new in Calculus II. Given the function $f(x)=(x^2(e^x−1))^{frac{1}{5}}$, I would like to determine a qualitative graph of the function in the neighbourhood of x=0. I know that there might be an inflection point in x=0, but I'm stuck as I don't really know how to proceed. Should I calculate the second derivative in $x=0$?
calculus functions derivatives
$endgroup$
add a comment |
$begingroup$
I'm new in Calculus II. Given the function $f(x)=(x^2(e^x−1))^{frac{1}{5}}$, I would like to determine a qualitative graph of the function in the neighbourhood of x=0. I know that there might be an inflection point in x=0, but I'm stuck as I don't really know how to proceed. Should I calculate the second derivative in $x=0$?
calculus functions derivatives
$endgroup$
I'm new in Calculus II. Given the function $f(x)=(x^2(e^x−1))^{frac{1}{5}}$, I would like to determine a qualitative graph of the function in the neighbourhood of x=0. I know that there might be an inflection point in x=0, but I'm stuck as I don't really know how to proceed. Should I calculate the second derivative in $x=0$?
calculus functions derivatives
calculus functions derivatives
asked Jan 20 at 14:52
KevinKevin
13311
13311
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This problem seems designed for using power series expansions (i.e. Taylor series), which is usually covered towards the end of U.S. calculus 2 courses, but since you didn't say what your Calculus II consists of (or even say what you've covered so far), I'm going to take the power series approach.
In what follows I'll show that
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$
I’ll avoid taking derivatives by using basic algebraic manipulation along with the expansions of $e^u$ and $(1+u)^{1/5}:$
$$e^u ;; = ;; 1 ; + ; u ; + ; frac{1}{2}u^2 ; + ; frac{1}{6}u^3 ; + ; frac{1}{24}u^4 ; + ; cdots $$
$$ (1+u)^{1/5} ;; = ;; 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots $$
The expansion for $(1+u)^{1/5}$ is the binomial expansion for the exponent $frac{1}{5}.$ See this answer, using $t=frac{1}{5}.$
In what follows I’ll carry out the computations far enough to obtain the first three terms of the expansion.
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{2/5}cdot left[ left( 1 + x + frac{1}{2}x^2 + frac{1}{6}x^3 + cdots right) ; - ; 1 right]^{1/5} $$
$$ = ;; x^{2/5}cdot left[x ; + ; frac{1}{2}x^2 ; + ; frac{1}{6}x^3 ; + ; cdots right]^{1/5} $$
$$ = ;; x^{2/5}cdot left[ xleft(1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right)right]^{1/5} $$
$$ = ;; x^{2/5}cdot x^{1/5} cdot left[1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right]^{1/5} $$
$$ = ;; x^{3/5}cdot left[1 ; + ; left(frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdotsright) right]^{1/5} $$
$$ = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5}, $$
where $u ; = ; left(frac{1}{2}x + frac{1}{6}x^2 + cdots right).$
Thus, we have
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5} $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right) - frac{2}{25}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^2 + frac{6}{125}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^3 - cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) - frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 + frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 - cdots right] $$
To obtain the correct first three terms, we need to obtain the correct first three terms inside the square brackets (i.e. up through quadratic in $x).$ In everything that follows, I'll use $;+ ; cdots ;$ at the point where we do not need to continue any further, given that all we want are the correct terms up through quadratic in $x.$
$$ frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) ;; = ;; 0 ; + ;frac{1}{10}x ; + ; frac{1}{30}x^2 ; + ; cdots $$
$$ frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 ;; = ;; frac{2}{25}x^2 cdot left(frac{1}{2}right)^2 ; + ; cdots ;; = ;; 0 ; + ; 0x ; + ; frac{1}{50}x^2 ; + ; cdots $$
$$ frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 ;; = ;; 0 ;+ ; 0x ; + ; 0x^2 ; + ; cdots $$
Using these, we get
$$= ;; x^{3/5} cdot left[ 1 + left(0 + frac{1}{10}x + frac{1}{30}x^2 + cdotsright) - left(0 + 0x + frac{1}{50}x^2 + cdotsright) + left(0 + 0x + 0x^2 + cdotsright) - cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{30}x^2 ; - ; frac{1}{50}x^2 ; + ; cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{75}x^2 ; + ; cdots right] $$
$$ = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$
The expansion above agrees with what WolframAlpha gives.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5}$ for $0 < x < 4$ on the same axes.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5}$ for $0 < x < 4$ on the same axes.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5} + frac{1}{75}x^{13/5}$ for $0 < x < 4$ on the same axes.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080671%2fgraph-of-a-function-in-the-neighbourhood-of-x-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This problem seems designed for using power series expansions (i.e. Taylor series), which is usually covered towards the end of U.S. calculus 2 courses, but since you didn't say what your Calculus II consists of (or even say what you've covered so far), I'm going to take the power series approach.
In what follows I'll show that
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$
I’ll avoid taking derivatives by using basic algebraic manipulation along with the expansions of $e^u$ and $(1+u)^{1/5}:$
$$e^u ;; = ;; 1 ; + ; u ; + ; frac{1}{2}u^2 ; + ; frac{1}{6}u^3 ; + ; frac{1}{24}u^4 ; + ; cdots $$
$$ (1+u)^{1/5} ;; = ;; 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots $$
The expansion for $(1+u)^{1/5}$ is the binomial expansion for the exponent $frac{1}{5}.$ See this answer, using $t=frac{1}{5}.$
In what follows I’ll carry out the computations far enough to obtain the first three terms of the expansion.
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{2/5}cdot left[ left( 1 + x + frac{1}{2}x^2 + frac{1}{6}x^3 + cdots right) ; - ; 1 right]^{1/5} $$
$$ = ;; x^{2/5}cdot left[x ; + ; frac{1}{2}x^2 ; + ; frac{1}{6}x^3 ; + ; cdots right]^{1/5} $$
$$ = ;; x^{2/5}cdot left[ xleft(1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right)right]^{1/5} $$
$$ = ;; x^{2/5}cdot x^{1/5} cdot left[1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right]^{1/5} $$
$$ = ;; x^{3/5}cdot left[1 ; + ; left(frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdotsright) right]^{1/5} $$
$$ = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5}, $$
where $u ; = ; left(frac{1}{2}x + frac{1}{6}x^2 + cdots right).$
Thus, we have
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5} $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right) - frac{2}{25}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^2 + frac{6}{125}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^3 - cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) - frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 + frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 - cdots right] $$
To obtain the correct first three terms, we need to obtain the correct first three terms inside the square brackets (i.e. up through quadratic in $x).$ In everything that follows, I'll use $;+ ; cdots ;$ at the point where we do not need to continue any further, given that all we want are the correct terms up through quadratic in $x.$
$$ frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) ;; = ;; 0 ; + ;frac{1}{10}x ; + ; frac{1}{30}x^2 ; + ; cdots $$
$$ frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 ;; = ;; frac{2}{25}x^2 cdot left(frac{1}{2}right)^2 ; + ; cdots ;; = ;; 0 ; + ; 0x ; + ; frac{1}{50}x^2 ; + ; cdots $$
$$ frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 ;; = ;; 0 ;+ ; 0x ; + ; 0x^2 ; + ; cdots $$
Using these, we get
$$= ;; x^{3/5} cdot left[ 1 + left(0 + frac{1}{10}x + frac{1}{30}x^2 + cdotsright) - left(0 + 0x + frac{1}{50}x^2 + cdotsright) + left(0 + 0x + 0x^2 + cdotsright) - cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{30}x^2 ; - ; frac{1}{50}x^2 ; + ; cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{75}x^2 ; + ; cdots right] $$
$$ = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$
The expansion above agrees with what WolframAlpha gives.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5}$ for $0 < x < 4$ on the same axes.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5}$ for $0 < x < 4$ on the same axes.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5} + frac{1}{75}x^{13/5}$ for $0 < x < 4$ on the same axes.
$endgroup$
add a comment |
$begingroup$
This problem seems designed for using power series expansions (i.e. Taylor series), which is usually covered towards the end of U.S. calculus 2 courses, but since you didn't say what your Calculus II consists of (or even say what you've covered so far), I'm going to take the power series approach.
In what follows I'll show that
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$
I’ll avoid taking derivatives by using basic algebraic manipulation along with the expansions of $e^u$ and $(1+u)^{1/5}:$
$$e^u ;; = ;; 1 ; + ; u ; + ; frac{1}{2}u^2 ; + ; frac{1}{6}u^3 ; + ; frac{1}{24}u^4 ; + ; cdots $$
$$ (1+u)^{1/5} ;; = ;; 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots $$
The expansion for $(1+u)^{1/5}$ is the binomial expansion for the exponent $frac{1}{5}.$ See this answer, using $t=frac{1}{5}.$
In what follows I’ll carry out the computations far enough to obtain the first three terms of the expansion.
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{2/5}cdot left[ left( 1 + x + frac{1}{2}x^2 + frac{1}{6}x^3 + cdots right) ; - ; 1 right]^{1/5} $$
$$ = ;; x^{2/5}cdot left[x ; + ; frac{1}{2}x^2 ; + ; frac{1}{6}x^3 ; + ; cdots right]^{1/5} $$
$$ = ;; x^{2/5}cdot left[ xleft(1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right)right]^{1/5} $$
$$ = ;; x^{2/5}cdot x^{1/5} cdot left[1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right]^{1/5} $$
$$ = ;; x^{3/5}cdot left[1 ; + ; left(frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdotsright) right]^{1/5} $$
$$ = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5}, $$
where $u ; = ; left(frac{1}{2}x + frac{1}{6}x^2 + cdots right).$
Thus, we have
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5} $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right) - frac{2}{25}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^2 + frac{6}{125}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^3 - cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) - frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 + frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 - cdots right] $$
To obtain the correct first three terms, we need to obtain the correct first three terms inside the square brackets (i.e. up through quadratic in $x).$ In everything that follows, I'll use $;+ ; cdots ;$ at the point where we do not need to continue any further, given that all we want are the correct terms up through quadratic in $x.$
$$ frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) ;; = ;; 0 ; + ;frac{1}{10}x ; + ; frac{1}{30}x^2 ; + ; cdots $$
$$ frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 ;; = ;; frac{2}{25}x^2 cdot left(frac{1}{2}right)^2 ; + ; cdots ;; = ;; 0 ; + ; 0x ; + ; frac{1}{50}x^2 ; + ; cdots $$
$$ frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 ;; = ;; 0 ;+ ; 0x ; + ; 0x^2 ; + ; cdots $$
Using these, we get
$$= ;; x^{3/5} cdot left[ 1 + left(0 + frac{1}{10}x + frac{1}{30}x^2 + cdotsright) - left(0 + 0x + frac{1}{50}x^2 + cdotsright) + left(0 + 0x + 0x^2 + cdotsright) - cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{30}x^2 ; - ; frac{1}{50}x^2 ; + ; cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{75}x^2 ; + ; cdots right] $$
$$ = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$
The expansion above agrees with what WolframAlpha gives.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5}$ for $0 < x < 4$ on the same axes.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5}$ for $0 < x < 4$ on the same axes.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5} + frac{1}{75}x^{13/5}$ for $0 < x < 4$ on the same axes.
$endgroup$
add a comment |
$begingroup$
This problem seems designed for using power series expansions (i.e. Taylor series), which is usually covered towards the end of U.S. calculus 2 courses, but since you didn't say what your Calculus II consists of (or even say what you've covered so far), I'm going to take the power series approach.
In what follows I'll show that
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$
I’ll avoid taking derivatives by using basic algebraic manipulation along with the expansions of $e^u$ and $(1+u)^{1/5}:$
$$e^u ;; = ;; 1 ; + ; u ; + ; frac{1}{2}u^2 ; + ; frac{1}{6}u^3 ; + ; frac{1}{24}u^4 ; + ; cdots $$
$$ (1+u)^{1/5} ;; = ;; 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots $$
The expansion for $(1+u)^{1/5}$ is the binomial expansion for the exponent $frac{1}{5}.$ See this answer, using $t=frac{1}{5}.$
In what follows I’ll carry out the computations far enough to obtain the first three terms of the expansion.
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{2/5}cdot left[ left( 1 + x + frac{1}{2}x^2 + frac{1}{6}x^3 + cdots right) ; - ; 1 right]^{1/5} $$
$$ = ;; x^{2/5}cdot left[x ; + ; frac{1}{2}x^2 ; + ; frac{1}{6}x^3 ; + ; cdots right]^{1/5} $$
$$ = ;; x^{2/5}cdot left[ xleft(1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right)right]^{1/5} $$
$$ = ;; x^{2/5}cdot x^{1/5} cdot left[1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right]^{1/5} $$
$$ = ;; x^{3/5}cdot left[1 ; + ; left(frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdotsright) right]^{1/5} $$
$$ = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5}, $$
where $u ; = ; left(frac{1}{2}x + frac{1}{6}x^2 + cdots right).$
Thus, we have
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5} $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right) - frac{2}{25}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^2 + frac{6}{125}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^3 - cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) - frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 + frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 - cdots right] $$
To obtain the correct first three terms, we need to obtain the correct first three terms inside the square brackets (i.e. up through quadratic in $x).$ In everything that follows, I'll use $;+ ; cdots ;$ at the point where we do not need to continue any further, given that all we want are the correct terms up through quadratic in $x.$
$$ frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) ;; = ;; 0 ; + ;frac{1}{10}x ; + ; frac{1}{30}x^2 ; + ; cdots $$
$$ frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 ;; = ;; frac{2}{25}x^2 cdot left(frac{1}{2}right)^2 ; + ; cdots ;; = ;; 0 ; + ; 0x ; + ; frac{1}{50}x^2 ; + ; cdots $$
$$ frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 ;; = ;; 0 ;+ ; 0x ; + ; 0x^2 ; + ; cdots $$
Using these, we get
$$= ;; x^{3/5} cdot left[ 1 + left(0 + frac{1}{10}x + frac{1}{30}x^2 + cdotsright) - left(0 + 0x + frac{1}{50}x^2 + cdotsright) + left(0 + 0x + 0x^2 + cdotsright) - cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{30}x^2 ; - ; frac{1}{50}x^2 ; + ; cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{75}x^2 ; + ; cdots right] $$
$$ = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$
The expansion above agrees with what WolframAlpha gives.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5}$ for $0 < x < 4$ on the same axes.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5}$ for $0 < x < 4$ on the same axes.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5} + frac{1}{75}x^{13/5}$ for $0 < x < 4$ on the same axes.
$endgroup$
This problem seems designed for using power series expansions (i.e. Taylor series), which is usually covered towards the end of U.S. calculus 2 courses, but since you didn't say what your Calculus II consists of (or even say what you've covered so far), I'm going to take the power series approach.
In what follows I'll show that
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$
I’ll avoid taking derivatives by using basic algebraic manipulation along with the expansions of $e^u$ and $(1+u)^{1/5}:$
$$e^u ;; = ;; 1 ; + ; u ; + ; frac{1}{2}u^2 ; + ; frac{1}{6}u^3 ; + ; frac{1}{24}u^4 ; + ; cdots $$
$$ (1+u)^{1/5} ;; = ;; 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots $$
The expansion for $(1+u)^{1/5}$ is the binomial expansion for the exponent $frac{1}{5}.$ See this answer, using $t=frac{1}{5}.$
In what follows I’ll carry out the computations far enough to obtain the first three terms of the expansion.
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{2/5}cdot left[ left( 1 + x + frac{1}{2}x^2 + frac{1}{6}x^3 + cdots right) ; - ; 1 right]^{1/5} $$
$$ = ;; x^{2/5}cdot left[x ; + ; frac{1}{2}x^2 ; + ; frac{1}{6}x^3 ; + ; cdots right]^{1/5} $$
$$ = ;; x^{2/5}cdot left[ xleft(1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right)right]^{1/5} $$
$$ = ;; x^{2/5}cdot x^{1/5} cdot left[1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right]^{1/5} $$
$$ = ;; x^{3/5}cdot left[1 ; + ; left(frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdotsright) right]^{1/5} $$
$$ = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5}, $$
where $u ; = ; left(frac{1}{2}x + frac{1}{6}x^2 + cdots right).$
Thus, we have
$$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5} $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right) - frac{2}{25}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^2 + frac{6}{125}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^3 - cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) - frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 + frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 - cdots right] $$
To obtain the correct first three terms, we need to obtain the correct first three terms inside the square brackets (i.e. up through quadratic in $x).$ In everything that follows, I'll use $;+ ; cdots ;$ at the point where we do not need to continue any further, given that all we want are the correct terms up through quadratic in $x.$
$$ frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) ;; = ;; 0 ; + ;frac{1}{10}x ; + ; frac{1}{30}x^2 ; + ; cdots $$
$$ frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 ;; = ;; frac{2}{25}x^2 cdot left(frac{1}{2}right)^2 ; + ; cdots ;; = ;; 0 ; + ; 0x ; + ; frac{1}{50}x^2 ; + ; cdots $$
$$ frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 ;; = ;; 0 ;+ ; 0x ; + ; 0x^2 ; + ; cdots $$
Using these, we get
$$= ;; x^{3/5} cdot left[ 1 + left(0 + frac{1}{10}x + frac{1}{30}x^2 + cdotsright) - left(0 + 0x + frac{1}{50}x^2 + cdotsright) + left(0 + 0x + 0x^2 + cdotsright) - cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{30}x^2 ; - ; frac{1}{50}x^2 ; + ; cdots right] $$
$$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{75}x^2 ; + ; cdots right] $$
$$ = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$
The expansion above agrees with what WolframAlpha gives.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5}$ for $0 < x < 4$ on the same axes.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5}$ for $0 < x < 4$ on the same axes.
See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5} + frac{1}{75}x^{13/5}$ for $0 < x < 4$ on the same axes.
answered Jan 20 at 18:05
Dave L. RenfroDave L. Renfro
24.9k33982
24.9k33982
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080671%2fgraph-of-a-function-in-the-neighbourhood-of-x-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown