Graph of a function in the neighbourhood of $x=0$












1












$begingroup$


I'm new in Calculus II. Given the function $f(x)=(x^2(e^x−1))^{frac{1}{5}}$, I would like to determine a qualitative graph of the function in the neighbourhood of x=0. I know that there might be an inflection point in x=0, but I'm stuck as I don't really know how to proceed. Should I calculate the second derivative in $x=0$?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I'm new in Calculus II. Given the function $f(x)=(x^2(e^x−1))^{frac{1}{5}}$, I would like to determine a qualitative graph of the function in the neighbourhood of x=0. I know that there might be an inflection point in x=0, but I'm stuck as I don't really know how to proceed. Should I calculate the second derivative in $x=0$?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I'm new in Calculus II. Given the function $f(x)=(x^2(e^x−1))^{frac{1}{5}}$, I would like to determine a qualitative graph of the function in the neighbourhood of x=0. I know that there might be an inflection point in x=0, but I'm stuck as I don't really know how to proceed. Should I calculate the second derivative in $x=0$?










      share|cite|improve this question









      $endgroup$




      I'm new in Calculus II. Given the function $f(x)=(x^2(e^x−1))^{frac{1}{5}}$, I would like to determine a qualitative graph of the function in the neighbourhood of x=0. I know that there might be an inflection point in x=0, but I'm stuck as I don't really know how to proceed. Should I calculate the second derivative in $x=0$?







      calculus functions derivatives






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 20 at 14:52









      KevinKevin

      13311




      13311






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          This problem seems designed for using power series expansions (i.e. Taylor series), which is usually covered towards the end of U.S. calculus 2 courses, but since you didn't say what your Calculus II consists of (or even say what you've covered so far), I'm going to take the power series approach.



          In what follows I'll show that



          $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$



          I’ll avoid taking derivatives by using basic algebraic manipulation along with the expansions of $e^u$ and $(1+u)^{1/5}:$



          $$e^u ;; = ;; 1 ; + ; u ; + ; frac{1}{2}u^2 ; + ; frac{1}{6}u^3 ; + ; frac{1}{24}u^4 ; + ; cdots $$



          $$ (1+u)^{1/5} ;; = ;; 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots $$



          The expansion for $(1+u)^{1/5}$ is the binomial expansion for the exponent $frac{1}{5}.$ See this answer, using $t=frac{1}{5}.$



          In what follows I’ll carry out the computations far enough to obtain the first three terms of the expansion.



          $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{2/5}cdot left[ left( 1 + x + frac{1}{2}x^2 + frac{1}{6}x^3 + cdots right) ; - ; 1 right]^{1/5} $$



          $$ = ;; x^{2/5}cdot left[x ; + ; frac{1}{2}x^2 ; + ; frac{1}{6}x^3 ; + ; cdots right]^{1/5} $$



          $$ = ;; x^{2/5}cdot left[ xleft(1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right)right]^{1/5} $$



          $$ = ;; x^{2/5}cdot x^{1/5} cdot left[1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right]^{1/5} $$



          $$ = ;; x^{3/5}cdot left[1 ; + ; left(frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdotsright) right]^{1/5} $$



          $$ = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5}, $$



          where $u ; = ; left(frac{1}{2}x + frac{1}{6}x^2 + cdots right).$



          Thus, we have



          $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5} $$



          $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots right] $$



          $$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right) - frac{2}{25}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^2 + frac{6}{125}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^3 - cdots right] $$



          $$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) - frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 + frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 - cdots right] $$



          To obtain the correct first three terms, we need to obtain the correct first three terms inside the square brackets (i.e. up through quadratic in $x).$ In everything that follows, I'll use $;+ ; cdots ;$ at the point where we do not need to continue any further, given that all we want are the correct terms up through quadratic in $x.$



          $$ frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) ;; = ;; 0 ; + ;frac{1}{10}x ; + ; frac{1}{30}x^2 ; + ; cdots $$



          $$ frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 ;; = ;; frac{2}{25}x^2 cdot left(frac{1}{2}right)^2 ; + ; cdots ;; = ;; 0 ; + ; 0x ; + ; frac{1}{50}x^2 ; + ; cdots $$



          $$ frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 ;; = ;; 0 ;+ ; 0x ; + ; 0x^2 ; + ; cdots $$



          Using these, we get



          $$= ;; x^{3/5} cdot left[ 1 + left(0 + frac{1}{10}x + frac{1}{30}x^2 + cdotsright) - left(0 + 0x + frac{1}{50}x^2 + cdotsright) + left(0 + 0x + 0x^2 + cdotsright) - cdots right] $$



          $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{30}x^2 ; - ; frac{1}{50}x^2 ; + ; cdots right] $$



          $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{75}x^2 ; + ; cdots right] $$



          $$ = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$



          The expansion above agrees with what WolframAlpha gives.



          See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5}$ for $0 < x < 4$ on the same axes.



          See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5}$ for $0 < x < 4$ on the same axes.



          See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5} + frac{1}{75}x^{13/5}$ for $0 < x < 4$ on the same axes.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080671%2fgraph-of-a-function-in-the-neighbourhood-of-x-0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            This problem seems designed for using power series expansions (i.e. Taylor series), which is usually covered towards the end of U.S. calculus 2 courses, but since you didn't say what your Calculus II consists of (or even say what you've covered so far), I'm going to take the power series approach.



            In what follows I'll show that



            $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$



            I’ll avoid taking derivatives by using basic algebraic manipulation along with the expansions of $e^u$ and $(1+u)^{1/5}:$



            $$e^u ;; = ;; 1 ; + ; u ; + ; frac{1}{2}u^2 ; + ; frac{1}{6}u^3 ; + ; frac{1}{24}u^4 ; + ; cdots $$



            $$ (1+u)^{1/5} ;; = ;; 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots $$



            The expansion for $(1+u)^{1/5}$ is the binomial expansion for the exponent $frac{1}{5}.$ See this answer, using $t=frac{1}{5}.$



            In what follows I’ll carry out the computations far enough to obtain the first three terms of the expansion.



            $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{2/5}cdot left[ left( 1 + x + frac{1}{2}x^2 + frac{1}{6}x^3 + cdots right) ; - ; 1 right]^{1/5} $$



            $$ = ;; x^{2/5}cdot left[x ; + ; frac{1}{2}x^2 ; + ; frac{1}{6}x^3 ; + ; cdots right]^{1/5} $$



            $$ = ;; x^{2/5}cdot left[ xleft(1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right)right]^{1/5} $$



            $$ = ;; x^{2/5}cdot x^{1/5} cdot left[1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right]^{1/5} $$



            $$ = ;; x^{3/5}cdot left[1 ; + ; left(frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdotsright) right]^{1/5} $$



            $$ = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5}, $$



            where $u ; = ; left(frac{1}{2}x + frac{1}{6}x^2 + cdots right).$



            Thus, we have



            $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5} $$



            $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots right] $$



            $$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right) - frac{2}{25}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^2 + frac{6}{125}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^3 - cdots right] $$



            $$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) - frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 + frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 - cdots right] $$



            To obtain the correct first three terms, we need to obtain the correct first three terms inside the square brackets (i.e. up through quadratic in $x).$ In everything that follows, I'll use $;+ ; cdots ;$ at the point where we do not need to continue any further, given that all we want are the correct terms up through quadratic in $x.$



            $$ frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) ;; = ;; 0 ; + ;frac{1}{10}x ; + ; frac{1}{30}x^2 ; + ; cdots $$



            $$ frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 ;; = ;; frac{2}{25}x^2 cdot left(frac{1}{2}right)^2 ; + ; cdots ;; = ;; 0 ; + ; 0x ; + ; frac{1}{50}x^2 ; + ; cdots $$



            $$ frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 ;; = ;; 0 ;+ ; 0x ; + ; 0x^2 ; + ; cdots $$



            Using these, we get



            $$= ;; x^{3/5} cdot left[ 1 + left(0 + frac{1}{10}x + frac{1}{30}x^2 + cdotsright) - left(0 + 0x + frac{1}{50}x^2 + cdotsright) + left(0 + 0x + 0x^2 + cdotsright) - cdots right] $$



            $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{30}x^2 ; - ; frac{1}{50}x^2 ; + ; cdots right] $$



            $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{75}x^2 ; + ; cdots right] $$



            $$ = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$



            The expansion above agrees with what WolframAlpha gives.



            See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5}$ for $0 < x < 4$ on the same axes.



            See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5}$ for $0 < x < 4$ on the same axes.



            See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5} + frac{1}{75}x^{13/5}$ for $0 < x < 4$ on the same axes.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              This problem seems designed for using power series expansions (i.e. Taylor series), which is usually covered towards the end of U.S. calculus 2 courses, but since you didn't say what your Calculus II consists of (or even say what you've covered so far), I'm going to take the power series approach.



              In what follows I'll show that



              $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$



              I’ll avoid taking derivatives by using basic algebraic manipulation along with the expansions of $e^u$ and $(1+u)^{1/5}:$



              $$e^u ;; = ;; 1 ; + ; u ; + ; frac{1}{2}u^2 ; + ; frac{1}{6}u^3 ; + ; frac{1}{24}u^4 ; + ; cdots $$



              $$ (1+u)^{1/5} ;; = ;; 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots $$



              The expansion for $(1+u)^{1/5}$ is the binomial expansion for the exponent $frac{1}{5}.$ See this answer, using $t=frac{1}{5}.$



              In what follows I’ll carry out the computations far enough to obtain the first three terms of the expansion.



              $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{2/5}cdot left[ left( 1 + x + frac{1}{2}x^2 + frac{1}{6}x^3 + cdots right) ; - ; 1 right]^{1/5} $$



              $$ = ;; x^{2/5}cdot left[x ; + ; frac{1}{2}x^2 ; + ; frac{1}{6}x^3 ; + ; cdots right]^{1/5} $$



              $$ = ;; x^{2/5}cdot left[ xleft(1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right)right]^{1/5} $$



              $$ = ;; x^{2/5}cdot x^{1/5} cdot left[1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right]^{1/5} $$



              $$ = ;; x^{3/5}cdot left[1 ; + ; left(frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdotsright) right]^{1/5} $$



              $$ = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5}, $$



              where $u ; = ; left(frac{1}{2}x + frac{1}{6}x^2 + cdots right).$



              Thus, we have



              $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5} $$



              $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots right] $$



              $$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right) - frac{2}{25}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^2 + frac{6}{125}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^3 - cdots right] $$



              $$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) - frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 + frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 - cdots right] $$



              To obtain the correct first three terms, we need to obtain the correct first three terms inside the square brackets (i.e. up through quadratic in $x).$ In everything that follows, I'll use $;+ ; cdots ;$ at the point where we do not need to continue any further, given that all we want are the correct terms up through quadratic in $x.$



              $$ frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) ;; = ;; 0 ; + ;frac{1}{10}x ; + ; frac{1}{30}x^2 ; + ; cdots $$



              $$ frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 ;; = ;; frac{2}{25}x^2 cdot left(frac{1}{2}right)^2 ; + ; cdots ;; = ;; 0 ; + ; 0x ; + ; frac{1}{50}x^2 ; + ; cdots $$



              $$ frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 ;; = ;; 0 ;+ ; 0x ; + ; 0x^2 ; + ; cdots $$



              Using these, we get



              $$= ;; x^{3/5} cdot left[ 1 + left(0 + frac{1}{10}x + frac{1}{30}x^2 + cdotsright) - left(0 + 0x + frac{1}{50}x^2 + cdotsright) + left(0 + 0x + 0x^2 + cdotsright) - cdots right] $$



              $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{30}x^2 ; - ; frac{1}{50}x^2 ; + ; cdots right] $$



              $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{75}x^2 ; + ; cdots right] $$



              $$ = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$



              The expansion above agrees with what WolframAlpha gives.



              See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5}$ for $0 < x < 4$ on the same axes.



              See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5}$ for $0 < x < 4$ on the same axes.



              See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5} + frac{1}{75}x^{13/5}$ for $0 < x < 4$ on the same axes.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                This problem seems designed for using power series expansions (i.e. Taylor series), which is usually covered towards the end of U.S. calculus 2 courses, but since you didn't say what your Calculus II consists of (or even say what you've covered so far), I'm going to take the power series approach.



                In what follows I'll show that



                $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$



                I’ll avoid taking derivatives by using basic algebraic manipulation along with the expansions of $e^u$ and $(1+u)^{1/5}:$



                $$e^u ;; = ;; 1 ; + ; u ; + ; frac{1}{2}u^2 ; + ; frac{1}{6}u^3 ; + ; frac{1}{24}u^4 ; + ; cdots $$



                $$ (1+u)^{1/5} ;; = ;; 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots $$



                The expansion for $(1+u)^{1/5}$ is the binomial expansion for the exponent $frac{1}{5}.$ See this answer, using $t=frac{1}{5}.$



                In what follows I’ll carry out the computations far enough to obtain the first three terms of the expansion.



                $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{2/5}cdot left[ left( 1 + x + frac{1}{2}x^2 + frac{1}{6}x^3 + cdots right) ; - ; 1 right]^{1/5} $$



                $$ = ;; x^{2/5}cdot left[x ; + ; frac{1}{2}x^2 ; + ; frac{1}{6}x^3 ; + ; cdots right]^{1/5} $$



                $$ = ;; x^{2/5}cdot left[ xleft(1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right)right]^{1/5} $$



                $$ = ;; x^{2/5}cdot x^{1/5} cdot left[1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right]^{1/5} $$



                $$ = ;; x^{3/5}cdot left[1 ; + ; left(frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdotsright) right]^{1/5} $$



                $$ = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5}, $$



                where $u ; = ; left(frac{1}{2}x + frac{1}{6}x^2 + cdots right).$



                Thus, we have



                $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5} $$



                $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots right] $$



                $$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right) - frac{2}{25}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^2 + frac{6}{125}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^3 - cdots right] $$



                $$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) - frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 + frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 - cdots right] $$



                To obtain the correct first three terms, we need to obtain the correct first three terms inside the square brackets (i.e. up through quadratic in $x).$ In everything that follows, I'll use $;+ ; cdots ;$ at the point where we do not need to continue any further, given that all we want are the correct terms up through quadratic in $x.$



                $$ frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) ;; = ;; 0 ; + ;frac{1}{10}x ; + ; frac{1}{30}x^2 ; + ; cdots $$



                $$ frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 ;; = ;; frac{2}{25}x^2 cdot left(frac{1}{2}right)^2 ; + ; cdots ;; = ;; 0 ; + ; 0x ; + ; frac{1}{50}x^2 ; + ; cdots $$



                $$ frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 ;; = ;; 0 ;+ ; 0x ; + ; 0x^2 ; + ; cdots $$



                Using these, we get



                $$= ;; x^{3/5} cdot left[ 1 + left(0 + frac{1}{10}x + frac{1}{30}x^2 + cdotsright) - left(0 + 0x + frac{1}{50}x^2 + cdotsright) + left(0 + 0x + 0x^2 + cdotsright) - cdots right] $$



                $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{30}x^2 ; - ; frac{1}{50}x^2 ; + ; cdots right] $$



                $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{75}x^2 ; + ; cdots right] $$



                $$ = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$



                The expansion above agrees with what WolframAlpha gives.



                See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5}$ for $0 < x < 4$ on the same axes.



                See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5}$ for $0 < x < 4$ on the same axes.



                See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5} + frac{1}{75}x^{13/5}$ for $0 < x < 4$ on the same axes.






                share|cite|improve this answer









                $endgroup$



                This problem seems designed for using power series expansions (i.e. Taylor series), which is usually covered towards the end of U.S. calculus 2 courses, but since you didn't say what your Calculus II consists of (or even say what you've covered so far), I'm going to take the power series approach.



                In what follows I'll show that



                $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$



                I’ll avoid taking derivatives by using basic algebraic manipulation along with the expansions of $e^u$ and $(1+u)^{1/5}:$



                $$e^u ;; = ;; 1 ; + ; u ; + ; frac{1}{2}u^2 ; + ; frac{1}{6}u^3 ; + ; frac{1}{24}u^4 ; + ; cdots $$



                $$ (1+u)^{1/5} ;; = ;; 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots $$



                The expansion for $(1+u)^{1/5}$ is the binomial expansion for the exponent $frac{1}{5}.$ See this answer, using $t=frac{1}{5}.$



                In what follows I’ll carry out the computations far enough to obtain the first three terms of the expansion.



                $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{2/5}cdot left[ left( 1 + x + frac{1}{2}x^2 + frac{1}{6}x^3 + cdots right) ; - ; 1 right]^{1/5} $$



                $$ = ;; x^{2/5}cdot left[x ; + ; frac{1}{2}x^2 ; + ; frac{1}{6}x^3 ; + ; cdots right]^{1/5} $$



                $$ = ;; x^{2/5}cdot left[ xleft(1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right)right]^{1/5} $$



                $$ = ;; x^{2/5}cdot x^{1/5} cdot left[1 ; + ; frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdots right]^{1/5} $$



                $$ = ;; x^{3/5}cdot left[1 ; + ; left(frac{1}{2}x ; + ; frac{1}{6}x^2 ; + ; cdotsright) right]^{1/5} $$



                $$ = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5}, $$



                where $u ; = ; left(frac{1}{2}x + frac{1}{6}x^2 + cdots right).$



                Thus, we have



                $$ x^{2/5}(e^x - 1)^{1/5} ;; = ;; x^{3/5}cdot left[1 ; + ; u right]^{1/5} $$



                $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{5}u ; - ; frac{2}{25}u^2 ; + ; frac{6}{125}u^3 ; - ; cdots right] $$



                $$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right) - frac{2}{25}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^2 + frac{6}{125}left(frac{1}{2}x + frac{1}{6}x^2 + cdots right)^3 - cdots right] $$



                $$= ;; x^{3/5} cdot left[ 1 + frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) - frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 + frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 - cdots right] $$



                To obtain the correct first three terms, we need to obtain the correct first three terms inside the square brackets (i.e. up through quadratic in $x).$ In everything that follows, I'll use $;+ ; cdots ;$ at the point where we do not need to continue any further, given that all we want are the correct terms up through quadratic in $x.$



                $$ frac{1}{5}xleft(frac{1}{2} + frac{1}{6}x + cdots right) ;; = ;; 0 ; + ;frac{1}{10}x ; + ; frac{1}{30}x^2 ; + ; cdots $$



                $$ frac{2}{25}x^2left(frac{1}{2} + frac{1}{6}x + cdots right)^2 ;; = ;; frac{2}{25}x^2 cdot left(frac{1}{2}right)^2 ; + ; cdots ;; = ;; 0 ; + ; 0x ; + ; frac{1}{50}x^2 ; + ; cdots $$



                $$ frac{6}{125}x^3left(frac{1}{2} + frac{1}{6}x + cdots right)^3 ;; = ;; 0 ;+ ; 0x ; + ; 0x^2 ; + ; cdots $$



                Using these, we get



                $$= ;; x^{3/5} cdot left[ 1 + left(0 + frac{1}{10}x + frac{1}{30}x^2 + cdotsright) - left(0 + 0x + frac{1}{50}x^2 + cdotsright) + left(0 + 0x + 0x^2 + cdotsright) - cdots right] $$



                $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{30}x^2 ; - ; frac{1}{50}x^2 ; + ; cdots right] $$



                $$= ;; x^{3/5} cdot left[ 1 ; + ; frac{1}{10}x ; + ; frac{1}{75}x^2 ; + ; cdots right] $$



                $$ = ;; x^{3/5} ; + ; frac{1}{10}x^{8/5} ; + ; frac{1}{75}x^{13/5} ; + ; cdots $$



                The expansion above agrees with what WolframAlpha gives.



                See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5}$ for $0 < x < 4$ on the same axes.



                See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5}$ for $0 < x < 4$ on the same axes.



                See here for a graph of $y = x^{2/5}(e^x - 1)^{1/5}$ and $y = x^{3/5} + frac{1}{10}x^{8/5} + frac{1}{75}x^{13/5}$ for $0 < x < 4$ on the same axes.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 20 at 18:05









                Dave L. RenfroDave L. Renfro

                24.9k33982




                24.9k33982






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080671%2fgraph-of-a-function-in-the-neighbourhood-of-x-0%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    The Binding of Isaac: Rebirth/Afterbirth

                    What does “Dominus providebit” mean?