Fourier Transform of Heaviside Step Function
$begingroup$
Is it possible using the following property of Fourier transforms;
$$frac{d^nf(x)}{dx^n} = 2pi inu hat{f}(x)$$
to show that the Fourier transform of the heaviside step function is equal to;
$$hat{f}[theta(t)] = frac{1}{2pi i nu}$$
Using the property listed above we can write:
$$hat{f}[theta'(t)] = 2pi inuhat{f}[theta(t)]$$ But since we know the (distributional) derivative of the Heaviside step function is the Dirac delta function.
$$ hat{f}[delta(t)] = 2pi inuhat{f}[theta(t)]$$
$$implies hat{f}[theta(t)] = frac{hat{f}[delta(t)]}{2pi i nu}$$
And since the Fourier transform of the delta function is just $1$ we get:
$$ hat{f}[theta(t)] = frac{1}{2 pi i nu}$$
I am unsure if this process is correct or rigorous since my knowledge and understanding of distributions and generalised functions is limited.
If this method presented above is indeed allowed I am unsure why this answer contradicts the answer shown on Mathworld which states the Fourier transform of the Heaviside step function is equal to:
$$ frac{1}{2}bigl[delta(k)space - frac{i}{pi k}bigr]$$
There is also another article here https://www.cs.uaf.edu/~bueler/M611heaviside.pdf which does not return my answer.
Any comments, corrections or answers are greatly appreciated.
Thanks!
fourier-analysis distribution-theory fourier-transform dirac-delta
$endgroup$
add a comment |
$begingroup$
Is it possible using the following property of Fourier transforms;
$$frac{d^nf(x)}{dx^n} = 2pi inu hat{f}(x)$$
to show that the Fourier transform of the heaviside step function is equal to;
$$hat{f}[theta(t)] = frac{1}{2pi i nu}$$
Using the property listed above we can write:
$$hat{f}[theta'(t)] = 2pi inuhat{f}[theta(t)]$$ But since we know the (distributional) derivative of the Heaviside step function is the Dirac delta function.
$$ hat{f}[delta(t)] = 2pi inuhat{f}[theta(t)]$$
$$implies hat{f}[theta(t)] = frac{hat{f}[delta(t)]}{2pi i nu}$$
And since the Fourier transform of the delta function is just $1$ we get:
$$ hat{f}[theta(t)] = frac{1}{2 pi i nu}$$
I am unsure if this process is correct or rigorous since my knowledge and understanding of distributions and generalised functions is limited.
If this method presented above is indeed allowed I am unsure why this answer contradicts the answer shown on Mathworld which states the Fourier transform of the Heaviside step function is equal to:
$$ frac{1}{2}bigl[delta(k)space - frac{i}{pi k}bigr]$$
There is also another article here https://www.cs.uaf.edu/~bueler/M611heaviside.pdf which does not return my answer.
Any comments, corrections or answers are greatly appreciated.
Thanks!
fourier-analysis distribution-theory fourier-transform dirac-delta
$endgroup$
$begingroup$
$displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
$endgroup$
– Felix Marin
May 3 '18 at 6:32
add a comment |
$begingroup$
Is it possible using the following property of Fourier transforms;
$$frac{d^nf(x)}{dx^n} = 2pi inu hat{f}(x)$$
to show that the Fourier transform of the heaviside step function is equal to;
$$hat{f}[theta(t)] = frac{1}{2pi i nu}$$
Using the property listed above we can write:
$$hat{f}[theta'(t)] = 2pi inuhat{f}[theta(t)]$$ But since we know the (distributional) derivative of the Heaviside step function is the Dirac delta function.
$$ hat{f}[delta(t)] = 2pi inuhat{f}[theta(t)]$$
$$implies hat{f}[theta(t)] = frac{hat{f}[delta(t)]}{2pi i nu}$$
And since the Fourier transform of the delta function is just $1$ we get:
$$ hat{f}[theta(t)] = frac{1}{2 pi i nu}$$
I am unsure if this process is correct or rigorous since my knowledge and understanding of distributions and generalised functions is limited.
If this method presented above is indeed allowed I am unsure why this answer contradicts the answer shown on Mathworld which states the Fourier transform of the Heaviside step function is equal to:
$$ frac{1}{2}bigl[delta(k)space - frac{i}{pi k}bigr]$$
There is also another article here https://www.cs.uaf.edu/~bueler/M611heaviside.pdf which does not return my answer.
Any comments, corrections or answers are greatly appreciated.
Thanks!
fourier-analysis distribution-theory fourier-transform dirac-delta
$endgroup$
Is it possible using the following property of Fourier transforms;
$$frac{d^nf(x)}{dx^n} = 2pi inu hat{f}(x)$$
to show that the Fourier transform of the heaviside step function is equal to;
$$hat{f}[theta(t)] = frac{1}{2pi i nu}$$
Using the property listed above we can write:
$$hat{f}[theta'(t)] = 2pi inuhat{f}[theta(t)]$$ But since we know the (distributional) derivative of the Heaviside step function is the Dirac delta function.
$$ hat{f}[delta(t)] = 2pi inuhat{f}[theta(t)]$$
$$implies hat{f}[theta(t)] = frac{hat{f}[delta(t)]}{2pi i nu}$$
And since the Fourier transform of the delta function is just $1$ we get:
$$ hat{f}[theta(t)] = frac{1}{2 pi i nu}$$
I am unsure if this process is correct or rigorous since my knowledge and understanding of distributions and generalised functions is limited.
If this method presented above is indeed allowed I am unsure why this answer contradicts the answer shown on Mathworld which states the Fourier transform of the Heaviside step function is equal to:
$$ frac{1}{2}bigl[delta(k)space - frac{i}{pi k}bigr]$$
There is also another article here https://www.cs.uaf.edu/~bueler/M611heaviside.pdf which does not return my answer.
Any comments, corrections or answers are greatly appreciated.
Thanks!
fourier-analysis distribution-theory fourier-transform dirac-delta
fourier-analysis distribution-theory fourier-transform dirac-delta
asked May 3 '18 at 5:45
LegendaryLegendary
327
327
$begingroup$
$displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
$endgroup$
– Felix Marin
May 3 '18 at 6:32
add a comment |
$begingroup$
$displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
$endgroup$
– Felix Marin
May 3 '18 at 6:32
$begingroup$
$displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
$endgroup$
– Felix Marin
May 3 '18 at 6:32
$begingroup$
$displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
$endgroup$
– Felix Marin
May 3 '18 at 6:32
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
mrm{H}pars{x} & = int_{-infty}^{infty}{expo{ic kx} over k - ic 0^{+}},
{dd k over 2piic}
\[5mm]
hat{mrm{H}}pars{k} & = {1 over k -ic 0^{+}},{1 over ic} =
-icbracks{mrm{P.V.}{1 over k} + icpi,deltapars{k}} =
-ic,mrm{P.V.}{1 over k} + pi,deltapars{k}
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2764426%2ffourier-transform-of-heaviside-step-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
mrm{H}pars{x} & = int_{-infty}^{infty}{expo{ic kx} over k - ic 0^{+}},
{dd k over 2piic}
\[5mm]
hat{mrm{H}}pars{k} & = {1 over k -ic 0^{+}},{1 over ic} =
-icbracks{mrm{P.V.}{1 over k} + icpi,deltapars{k}} =
-ic,mrm{P.V.}{1 over k} + pi,deltapars{k}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
mrm{H}pars{x} & = int_{-infty}^{infty}{expo{ic kx} over k - ic 0^{+}},
{dd k over 2piic}
\[5mm]
hat{mrm{H}}pars{k} & = {1 over k -ic 0^{+}},{1 over ic} =
-icbracks{mrm{P.V.}{1 over k} + icpi,deltapars{k}} =
-ic,mrm{P.V.}{1 over k} + pi,deltapars{k}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
mrm{H}pars{x} & = int_{-infty}^{infty}{expo{ic kx} over k - ic 0^{+}},
{dd k over 2piic}
\[5mm]
hat{mrm{H}}pars{k} & = {1 over k -ic 0^{+}},{1 over ic} =
-icbracks{mrm{P.V.}{1 over k} + icpi,deltapars{k}} =
-ic,mrm{P.V.}{1 over k} + pi,deltapars{k}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
mrm{H}pars{x} & = int_{-infty}^{infty}{expo{ic kx} over k - ic 0^{+}},
{dd k over 2piic}
\[5mm]
hat{mrm{H}}pars{k} & = {1 over k -ic 0^{+}},{1 over ic} =
-icbracks{mrm{P.V.}{1 over k} + icpi,deltapars{k}} =
-ic,mrm{P.V.}{1 over k} + pi,deltapars{k}
end{align}
answered May 3 '18 at 6:39
Felix MarinFelix Marin
68.1k7109143
68.1k7109143
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2764426%2ffourier-transform-of-heaviside-step-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
$endgroup$
– Felix Marin
May 3 '18 at 6:32