Fourier Transform of Heaviside Step Function












2












$begingroup$


Is it possible using the following property of Fourier transforms;



$$frac{d^nf(x)}{dx^n} = 2pi inu hat{f}(x)$$



to show that the Fourier transform of the heaviside step function is equal to;



$$hat{f}[theta(t)] = frac{1}{2pi i nu}$$



Using the property listed above we can write:



$$hat{f}[theta'(t)] = 2pi inuhat{f}[theta(t)]$$ But since we know the (distributional) derivative of the Heaviside step function is the Dirac delta function.



$$ hat{f}[delta(t)] = 2pi inuhat{f}[theta(t)]$$



$$implies hat{f}[theta(t)] = frac{hat{f}[delta(t)]}{2pi i nu}$$



And since the Fourier transform of the delta function is just $1$ we get:



$$ hat{f}[theta(t)] = frac{1}{2 pi i nu}$$



I am unsure if this process is correct or rigorous since my knowledge and understanding of distributions and generalised functions is limited.



If this method presented above is indeed allowed I am unsure why this answer contradicts the answer shown on Mathworld which states the Fourier transform of the Heaviside step function is equal to:



$$ frac{1}{2}bigl[delta(k)space - frac{i}{pi k}bigr]$$



There is also another article here https://www.cs.uaf.edu/~bueler/M611heaviside.pdf which does not return my answer.



Any comments, corrections or answers are greatly appreciated.



Thanks!










share|cite|improve this question









$endgroup$












  • $begingroup$
    $displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
    $endgroup$
    – Felix Marin
    May 3 '18 at 6:32


















2












$begingroup$


Is it possible using the following property of Fourier transforms;



$$frac{d^nf(x)}{dx^n} = 2pi inu hat{f}(x)$$



to show that the Fourier transform of the heaviside step function is equal to;



$$hat{f}[theta(t)] = frac{1}{2pi i nu}$$



Using the property listed above we can write:



$$hat{f}[theta'(t)] = 2pi inuhat{f}[theta(t)]$$ But since we know the (distributional) derivative of the Heaviside step function is the Dirac delta function.



$$ hat{f}[delta(t)] = 2pi inuhat{f}[theta(t)]$$



$$implies hat{f}[theta(t)] = frac{hat{f}[delta(t)]}{2pi i nu}$$



And since the Fourier transform of the delta function is just $1$ we get:



$$ hat{f}[theta(t)] = frac{1}{2 pi i nu}$$



I am unsure if this process is correct or rigorous since my knowledge and understanding of distributions and generalised functions is limited.



If this method presented above is indeed allowed I am unsure why this answer contradicts the answer shown on Mathworld which states the Fourier transform of the Heaviside step function is equal to:



$$ frac{1}{2}bigl[delta(k)space - frac{i}{pi k}bigr]$$



There is also another article here https://www.cs.uaf.edu/~bueler/M611heaviside.pdf which does not return my answer.



Any comments, corrections or answers are greatly appreciated.



Thanks!










share|cite|improve this question









$endgroup$












  • $begingroup$
    $displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
    $endgroup$
    – Felix Marin
    May 3 '18 at 6:32
















2












2








2





$begingroup$


Is it possible using the following property of Fourier transforms;



$$frac{d^nf(x)}{dx^n} = 2pi inu hat{f}(x)$$



to show that the Fourier transform of the heaviside step function is equal to;



$$hat{f}[theta(t)] = frac{1}{2pi i nu}$$



Using the property listed above we can write:



$$hat{f}[theta'(t)] = 2pi inuhat{f}[theta(t)]$$ But since we know the (distributional) derivative of the Heaviside step function is the Dirac delta function.



$$ hat{f}[delta(t)] = 2pi inuhat{f}[theta(t)]$$



$$implies hat{f}[theta(t)] = frac{hat{f}[delta(t)]}{2pi i nu}$$



And since the Fourier transform of the delta function is just $1$ we get:



$$ hat{f}[theta(t)] = frac{1}{2 pi i nu}$$



I am unsure if this process is correct or rigorous since my knowledge and understanding of distributions and generalised functions is limited.



If this method presented above is indeed allowed I am unsure why this answer contradicts the answer shown on Mathworld which states the Fourier transform of the Heaviside step function is equal to:



$$ frac{1}{2}bigl[delta(k)space - frac{i}{pi k}bigr]$$



There is also another article here https://www.cs.uaf.edu/~bueler/M611heaviside.pdf which does not return my answer.



Any comments, corrections or answers are greatly appreciated.



Thanks!










share|cite|improve this question









$endgroup$




Is it possible using the following property of Fourier transforms;



$$frac{d^nf(x)}{dx^n} = 2pi inu hat{f}(x)$$



to show that the Fourier transform of the heaviside step function is equal to;



$$hat{f}[theta(t)] = frac{1}{2pi i nu}$$



Using the property listed above we can write:



$$hat{f}[theta'(t)] = 2pi inuhat{f}[theta(t)]$$ But since we know the (distributional) derivative of the Heaviside step function is the Dirac delta function.



$$ hat{f}[delta(t)] = 2pi inuhat{f}[theta(t)]$$



$$implies hat{f}[theta(t)] = frac{hat{f}[delta(t)]}{2pi i nu}$$



And since the Fourier transform of the delta function is just $1$ we get:



$$ hat{f}[theta(t)] = frac{1}{2 pi i nu}$$



I am unsure if this process is correct or rigorous since my knowledge and understanding of distributions and generalised functions is limited.



If this method presented above is indeed allowed I am unsure why this answer contradicts the answer shown on Mathworld which states the Fourier transform of the Heaviside step function is equal to:



$$ frac{1}{2}bigl[delta(k)space - frac{i}{pi k}bigr]$$



There is also another article here https://www.cs.uaf.edu/~bueler/M611heaviside.pdf which does not return my answer.



Any comments, corrections or answers are greatly appreciated.



Thanks!







fourier-analysis distribution-theory fourier-transform dirac-delta






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 3 '18 at 5:45









LegendaryLegendary

327




327












  • $begingroup$
    $displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
    $endgroup$
    – Felix Marin
    May 3 '18 at 6:32




















  • $begingroup$
    $displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
    $endgroup$
    – Felix Marin
    May 3 '18 at 6:32


















$begingroup$
$displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
$endgroup$
– Felix Marin
May 3 '18 at 6:32






$begingroup$
$displaystylemathrm{H}left(xright) = int_{-infty}^{infty}{mathrm{e}^{mathrm{i}kx} over k - mathrm{i}0^{+}},{mathrm{d}k over 2pimathrm{i}}$ where $displaystyle x in mathbb{R}setminusleft{0right}$
$endgroup$
– Felix Marin
May 3 '18 at 6:32












1 Answer
1






active

oldest

votes


















0












$begingroup$

$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
mrm{H}pars{x} & = int_{-infty}^{infty}{expo{ic kx} over k - ic 0^{+}},
{dd k over 2piic}
\[5mm]
hat{mrm{H}}pars{k} & = {1 over k -ic 0^{+}},{1 over ic} =
-icbracks{mrm{P.V.}{1 over k} + icpi,deltapars{k}} =
-ic,mrm{P.V.}{1 over k} + pi,deltapars{k}
end{align}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2764426%2ffourier-transform-of-heaviside-step-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$
    begin{align}
    mrm{H}pars{x} & = int_{-infty}^{infty}{expo{ic kx} over k - ic 0^{+}},
    {dd k over 2piic}
    \[5mm]
    hat{mrm{H}}pars{k} & = {1 over k -ic 0^{+}},{1 over ic} =
    -icbracks{mrm{P.V.}{1 over k} + icpi,deltapars{k}} =
    -ic,mrm{P.V.}{1 over k} + pi,deltapars{k}
    end{align}






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$
      begin{align}
      mrm{H}pars{x} & = int_{-infty}^{infty}{expo{ic kx} over k - ic 0^{+}},
      {dd k over 2piic}
      \[5mm]
      hat{mrm{H}}pars{k} & = {1 over k -ic 0^{+}},{1 over ic} =
      -icbracks{mrm{P.V.}{1 over k} + icpi,deltapars{k}} =
      -ic,mrm{P.V.}{1 over k} + pi,deltapars{k}
      end{align}






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$
        begin{align}
        mrm{H}pars{x} & = int_{-infty}^{infty}{expo{ic kx} over k - ic 0^{+}},
        {dd k over 2piic}
        \[5mm]
        hat{mrm{H}}pars{k} & = {1 over k -ic 0^{+}},{1 over ic} =
        -icbracks{mrm{P.V.}{1 over k} + icpi,deltapars{k}} =
        -ic,mrm{P.V.}{1 over k} + pi,deltapars{k}
        end{align}






        share|cite|improve this answer









        $endgroup$



        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$
        begin{align}
        mrm{H}pars{x} & = int_{-infty}^{infty}{expo{ic kx} over k - ic 0^{+}},
        {dd k over 2piic}
        \[5mm]
        hat{mrm{H}}pars{k} & = {1 over k -ic 0^{+}},{1 over ic} =
        -icbracks{mrm{P.V.}{1 over k} + icpi,deltapars{k}} =
        -ic,mrm{P.V.}{1 over k} + pi,deltapars{k}
        end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered May 3 '18 at 6:39









        Felix MarinFelix Marin

        68.1k7109143




        68.1k7109143






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2764426%2ffourier-transform-of-heaviside-step-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?