Solve the integral $int_0^1int^1_xy^4e^{xy^2}dydx$.












1















Solve the integral $int_0^1int^1_xy^4e^{xy^2}dydx$.




I think that variables substituation is neede here. I've substitute
$$
\ left{begin{matrix}
u=xy^2\
v=y
end{matrix}right.
$$

and calculated
$$\J=begin{vmatrix}
y^2 & 2xy\
0 & 1
end{vmatrix}=y^2
$$

Then, the new integrand is $v^2e^u$. But what is the new domain? Thanks.










share|cite|improve this question


















  • 1




    Maybe try reversing order of integration?
    – Zachary Selk
    Jan 6 at 17:44






  • 2




    Obviously, $$x=u/v^2qquad v=y$$ hence the domain $$0<x<y<1$$ translates as $$0<u/v^2<v<1$$ that is, $$0<u<v^3<1$$
    – Did
    Jan 6 at 17:46












  • @ZacharySelk Ok, but then, what meaning does the $x$ in the lower bound of the external integral have: $int_x^1int_0^1 A dxdy$ (if $A$ is the integrand)?
    – J. Doe
    Jan 6 at 17:52






  • 1




    Draw a picture of the region.
    – Zachary Selk
    Jan 6 at 17:53






  • 1




    Yeah now it's totally doable.
    – Zachary Selk
    Jan 6 at 18:12
















1















Solve the integral $int_0^1int^1_xy^4e^{xy^2}dydx$.




I think that variables substituation is neede here. I've substitute
$$
\ left{begin{matrix}
u=xy^2\
v=y
end{matrix}right.
$$

and calculated
$$\J=begin{vmatrix}
y^2 & 2xy\
0 & 1
end{vmatrix}=y^2
$$

Then, the new integrand is $v^2e^u$. But what is the new domain? Thanks.










share|cite|improve this question


















  • 1




    Maybe try reversing order of integration?
    – Zachary Selk
    Jan 6 at 17:44






  • 2




    Obviously, $$x=u/v^2qquad v=y$$ hence the domain $$0<x<y<1$$ translates as $$0<u/v^2<v<1$$ that is, $$0<u<v^3<1$$
    – Did
    Jan 6 at 17:46












  • @ZacharySelk Ok, but then, what meaning does the $x$ in the lower bound of the external integral have: $int_x^1int_0^1 A dxdy$ (if $A$ is the integrand)?
    – J. Doe
    Jan 6 at 17:52






  • 1




    Draw a picture of the region.
    – Zachary Selk
    Jan 6 at 17:53






  • 1




    Yeah now it's totally doable.
    – Zachary Selk
    Jan 6 at 18:12














1












1








1








Solve the integral $int_0^1int^1_xy^4e^{xy^2}dydx$.




I think that variables substituation is neede here. I've substitute
$$
\ left{begin{matrix}
u=xy^2\
v=y
end{matrix}right.
$$

and calculated
$$\J=begin{vmatrix}
y^2 & 2xy\
0 & 1
end{vmatrix}=y^2
$$

Then, the new integrand is $v^2e^u$. But what is the new domain? Thanks.










share|cite|improve this question














Solve the integral $int_0^1int^1_xy^4e^{xy^2}dydx$.




I think that variables substituation is neede here. I've substitute
$$
\ left{begin{matrix}
u=xy^2\
v=y
end{matrix}right.
$$

and calculated
$$\J=begin{vmatrix}
y^2 & 2xy\
0 & 1
end{vmatrix}=y^2
$$

Then, the new integrand is $v^2e^u$. But what is the new domain? Thanks.







integration multivariable-calculus substitution jacobian






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 6 at 17:43









J. DoeJ. Doe

1286




1286








  • 1




    Maybe try reversing order of integration?
    – Zachary Selk
    Jan 6 at 17:44






  • 2




    Obviously, $$x=u/v^2qquad v=y$$ hence the domain $$0<x<y<1$$ translates as $$0<u/v^2<v<1$$ that is, $$0<u<v^3<1$$
    – Did
    Jan 6 at 17:46












  • @ZacharySelk Ok, but then, what meaning does the $x$ in the lower bound of the external integral have: $int_x^1int_0^1 A dxdy$ (if $A$ is the integrand)?
    – J. Doe
    Jan 6 at 17:52






  • 1




    Draw a picture of the region.
    – Zachary Selk
    Jan 6 at 17:53






  • 1




    Yeah now it's totally doable.
    – Zachary Selk
    Jan 6 at 18:12














  • 1




    Maybe try reversing order of integration?
    – Zachary Selk
    Jan 6 at 17:44






  • 2




    Obviously, $$x=u/v^2qquad v=y$$ hence the domain $$0<x<y<1$$ translates as $$0<u/v^2<v<1$$ that is, $$0<u<v^3<1$$
    – Did
    Jan 6 at 17:46












  • @ZacharySelk Ok, but then, what meaning does the $x$ in the lower bound of the external integral have: $int_x^1int_0^1 A dxdy$ (if $A$ is the integrand)?
    – J. Doe
    Jan 6 at 17:52






  • 1




    Draw a picture of the region.
    – Zachary Selk
    Jan 6 at 17:53






  • 1




    Yeah now it's totally doable.
    – Zachary Selk
    Jan 6 at 18:12








1




1




Maybe try reversing order of integration?
– Zachary Selk
Jan 6 at 17:44




Maybe try reversing order of integration?
– Zachary Selk
Jan 6 at 17:44




2




2




Obviously, $$x=u/v^2qquad v=y$$ hence the domain $$0<x<y<1$$ translates as $$0<u/v^2<v<1$$ that is, $$0<u<v^3<1$$
– Did
Jan 6 at 17:46






Obviously, $$x=u/v^2qquad v=y$$ hence the domain $$0<x<y<1$$ translates as $$0<u/v^2<v<1$$ that is, $$0<u<v^3<1$$
– Did
Jan 6 at 17:46














@ZacharySelk Ok, but then, what meaning does the $x$ in the lower bound of the external integral have: $int_x^1int_0^1 A dxdy$ (if $A$ is the integrand)?
– J. Doe
Jan 6 at 17:52




@ZacharySelk Ok, but then, what meaning does the $x$ in the lower bound of the external integral have: $int_x^1int_0^1 A dxdy$ (if $A$ is the integrand)?
– J. Doe
Jan 6 at 17:52




1




1




Draw a picture of the region.
– Zachary Selk
Jan 6 at 17:53




Draw a picture of the region.
– Zachary Selk
Jan 6 at 17:53




1




1




Yeah now it's totally doable.
– Zachary Selk
Jan 6 at 18:12




Yeah now it's totally doable.
– Zachary Selk
Jan 6 at 18:12










2 Answers
2






active

oldest

votes


















5














$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$




$ds{int_{0}^{1}int_{x}^{1}y^{4}expo{xy^{2}}dd y,dd x:
{LARGE ?}}$
.




begin{align}
&bbox[10px,#ffd]{int_{0}^{1}int_{x}^{1}y^{4}expo{xy^{2}}dd y,dd x} =
int_{0}^{1}y^{4}int_{0}^{y}expo{xy^{2}}dd x,dd y =
int_{0}^{1}y^{4}{expo{y^{3}} - 1 over y^{2}},dd y
\[5mm] = &
int_{0}^{1}pars{y^{2}expo{y^{3}} - y^{2}}dd y =
left.{expo{y^{3}} - y^{3} over 3},rightvert_{0}^{1} =
bbx{expo{} - 2 over 3} approx 0.2394
end{align}






share|cite|improve this answer





























    2














    Well, solving a much more general problem:



    $$mathcal{I}_text{n}left(alpharight):=int_0^alphaint_x^alphatext{y}^text{n}cdotexpleft(xcdottext{y}^{text{n}-2}right)spacetext{d}text{y}spacetext{d}xtag1$$



    Using that (for all $x$):



    $$expleft(xright)=sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}tag2$$



    We can write:



    $$mathcal{I}_text{n}left(alpharight)=int_0^alphaint_x^alphatext{y}^text{n}cdotsum_{text{k}=0}^inftyfrac{left(xcdottext{y}^{text{n}-2}right)^text{k}}{text{k}!}spacetext{d}text{y}spacetext{d}x=$$
    $$int_0^alphaint_x^alphatext{y}^text{n}cdotsum_{text{k}=0}^inftyfrac{x^text{k}cdottext{y}^{text{k}left(text{n}-2right)}}{text{k}!}spacetext{d}text{y}spacetext{d}x=$$
    $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}int_x^alphatext{y}^text{n}cdottext{y}^{text{k}left(text{n}-2right)}spacetext{d}text{y}right}spacetext{d}x=$$
    $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}int_x^alphatext{y}^{text{n}+text{k}left(text{n}-2right)}spacetext{d}text{y}right}spacetext{d}x=$$
    $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}cdotleft[frac{text{y}^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}right]_x^alpharight}spacetext{d}x=$$
    $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}cdotleft(frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}-frac{x^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}right)right}spacetext{d}x=$$
    $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotint_0^alpha x^text{k}spacetext{d}x-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotint_0^alpha x^{1+text{n}+text{k}left(text{n}-1right)}spacetext{d}xright}=$$
    $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{1+text{k}}}{1+text{k}}-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{1+1+text{n}+text{k}left(text{n}-1right)}}{1+1+text{n}+text{k}left(text{n}-1right)}right}=$$
    $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{1}{1+text{k}}-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{2+text{n}+text{k}left(text{n}-1right)}right}=$$
    $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotleft{frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{1+text{k}}-frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{2+text{n}+text{k}left(text{n}-1right)}right}tag3$$



    When $alpha=1$, we get:



    $$mathcal{I}_text{n}left(alpharight):=int_0^1int_x^1text{y}^text{n}cdotexpleft(xcdottext{y}^{text{n}-2}right)spacetext{d}text{y}spacetext{d}x=$$
    $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotleft{frac{1}{1+text{k}}-frac{1}{2+text{n}+text{k}left(text{n}-1right)}right}=$$
    $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{k}}cdotfrac{1}{2+text{n}+text{k}left(text{n}-1right)}tag4$$






    share|cite|improve this answer























      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064163%2fsolve-the-integral-int-01-int1-xy4exy2dydx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5














      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$




      $ds{int_{0}^{1}int_{x}^{1}y^{4}expo{xy^{2}}dd y,dd x:
      {LARGE ?}}$
      .




      begin{align}
      &bbox[10px,#ffd]{int_{0}^{1}int_{x}^{1}y^{4}expo{xy^{2}}dd y,dd x} =
      int_{0}^{1}y^{4}int_{0}^{y}expo{xy^{2}}dd x,dd y =
      int_{0}^{1}y^{4}{expo{y^{3}} - 1 over y^{2}},dd y
      \[5mm] = &
      int_{0}^{1}pars{y^{2}expo{y^{3}} - y^{2}}dd y =
      left.{expo{y^{3}} - y^{3} over 3},rightvert_{0}^{1} =
      bbx{expo{} - 2 over 3} approx 0.2394
      end{align}






      share|cite|improve this answer


























        5














        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$




        $ds{int_{0}^{1}int_{x}^{1}y^{4}expo{xy^{2}}dd y,dd x:
        {LARGE ?}}$
        .




        begin{align}
        &bbox[10px,#ffd]{int_{0}^{1}int_{x}^{1}y^{4}expo{xy^{2}}dd y,dd x} =
        int_{0}^{1}y^{4}int_{0}^{y}expo{xy^{2}}dd x,dd y =
        int_{0}^{1}y^{4}{expo{y^{3}} - 1 over y^{2}},dd y
        \[5mm] = &
        int_{0}^{1}pars{y^{2}expo{y^{3}} - y^{2}}dd y =
        left.{expo{y^{3}} - y^{3} over 3},rightvert_{0}^{1} =
        bbx{expo{} - 2 over 3} approx 0.2394
        end{align}






        share|cite|improve this answer
























          5












          5








          5






          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
          newcommand{dd}{mathrm{d}}
          newcommand{ds}[1]{displaystyle{#1}}
          newcommand{expo}[1]{,mathrm{e}^{#1},}
          newcommand{ic}{mathrm{i}}
          newcommand{mc}[1]{mathcal{#1}}
          newcommand{mrm}[1]{mathrm{#1}}
          newcommand{pars}[1]{left(,{#1},right)}
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
          newcommand{verts}[1]{leftvert,{#1},rightvert}$




          $ds{int_{0}^{1}int_{x}^{1}y^{4}expo{xy^{2}}dd y,dd x:
          {LARGE ?}}$
          .




          begin{align}
          &bbox[10px,#ffd]{int_{0}^{1}int_{x}^{1}y^{4}expo{xy^{2}}dd y,dd x} =
          int_{0}^{1}y^{4}int_{0}^{y}expo{xy^{2}}dd x,dd y =
          int_{0}^{1}y^{4}{expo{y^{3}} - 1 over y^{2}},dd y
          \[5mm] = &
          int_{0}^{1}pars{y^{2}expo{y^{3}} - y^{2}}dd y =
          left.{expo{y^{3}} - y^{3} over 3},rightvert_{0}^{1} =
          bbx{expo{} - 2 over 3} approx 0.2394
          end{align}






          share|cite|improve this answer












          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
          newcommand{dd}{mathrm{d}}
          newcommand{ds}[1]{displaystyle{#1}}
          newcommand{expo}[1]{,mathrm{e}^{#1},}
          newcommand{ic}{mathrm{i}}
          newcommand{mc}[1]{mathcal{#1}}
          newcommand{mrm}[1]{mathrm{#1}}
          newcommand{pars}[1]{left(,{#1},right)}
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
          newcommand{verts}[1]{leftvert,{#1},rightvert}$




          $ds{int_{0}^{1}int_{x}^{1}y^{4}expo{xy^{2}}dd y,dd x:
          {LARGE ?}}$
          .




          begin{align}
          &bbox[10px,#ffd]{int_{0}^{1}int_{x}^{1}y^{4}expo{xy^{2}}dd y,dd x} =
          int_{0}^{1}y^{4}int_{0}^{y}expo{xy^{2}}dd x,dd y =
          int_{0}^{1}y^{4}{expo{y^{3}} - 1 over y^{2}},dd y
          \[5mm] = &
          int_{0}^{1}pars{y^{2}expo{y^{3}} - y^{2}}dd y =
          left.{expo{y^{3}} - y^{3} over 3},rightvert_{0}^{1} =
          bbx{expo{} - 2 over 3} approx 0.2394
          end{align}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 6 at 21:48









          Felix MarinFelix Marin

          67.2k7107141




          67.2k7107141























              2














              Well, solving a much more general problem:



              $$mathcal{I}_text{n}left(alpharight):=int_0^alphaint_x^alphatext{y}^text{n}cdotexpleft(xcdottext{y}^{text{n}-2}right)spacetext{d}text{y}spacetext{d}xtag1$$



              Using that (for all $x$):



              $$expleft(xright)=sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}tag2$$



              We can write:



              $$mathcal{I}_text{n}left(alpharight)=int_0^alphaint_x^alphatext{y}^text{n}cdotsum_{text{k}=0}^inftyfrac{left(xcdottext{y}^{text{n}-2}right)^text{k}}{text{k}!}spacetext{d}text{y}spacetext{d}x=$$
              $$int_0^alphaint_x^alphatext{y}^text{n}cdotsum_{text{k}=0}^inftyfrac{x^text{k}cdottext{y}^{text{k}left(text{n}-2right)}}{text{k}!}spacetext{d}text{y}spacetext{d}x=$$
              $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}int_x^alphatext{y}^text{n}cdottext{y}^{text{k}left(text{n}-2right)}spacetext{d}text{y}right}spacetext{d}x=$$
              $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}int_x^alphatext{y}^{text{n}+text{k}left(text{n}-2right)}spacetext{d}text{y}right}spacetext{d}x=$$
              $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}cdotleft[frac{text{y}^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}right]_x^alpharight}spacetext{d}x=$$
              $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}cdotleft(frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}-frac{x^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}right)right}spacetext{d}x=$$
              $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotint_0^alpha x^text{k}spacetext{d}x-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotint_0^alpha x^{1+text{n}+text{k}left(text{n}-1right)}spacetext{d}xright}=$$
              $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{1+text{k}}}{1+text{k}}-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{1+1+text{n}+text{k}left(text{n}-1right)}}{1+1+text{n}+text{k}left(text{n}-1right)}right}=$$
              $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{1}{1+text{k}}-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{2+text{n}+text{k}left(text{n}-1right)}right}=$$
              $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotleft{frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{1+text{k}}-frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{2+text{n}+text{k}left(text{n}-1right)}right}tag3$$



              When $alpha=1$, we get:



              $$mathcal{I}_text{n}left(alpharight):=int_0^1int_x^1text{y}^text{n}cdotexpleft(xcdottext{y}^{text{n}-2}right)spacetext{d}text{y}spacetext{d}x=$$
              $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotleft{frac{1}{1+text{k}}-frac{1}{2+text{n}+text{k}left(text{n}-1right)}right}=$$
              $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{k}}cdotfrac{1}{2+text{n}+text{k}left(text{n}-1right)}tag4$$






              share|cite|improve this answer




























                2














                Well, solving a much more general problem:



                $$mathcal{I}_text{n}left(alpharight):=int_0^alphaint_x^alphatext{y}^text{n}cdotexpleft(xcdottext{y}^{text{n}-2}right)spacetext{d}text{y}spacetext{d}xtag1$$



                Using that (for all $x$):



                $$expleft(xright)=sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}tag2$$



                We can write:



                $$mathcal{I}_text{n}left(alpharight)=int_0^alphaint_x^alphatext{y}^text{n}cdotsum_{text{k}=0}^inftyfrac{left(xcdottext{y}^{text{n}-2}right)^text{k}}{text{k}!}spacetext{d}text{y}spacetext{d}x=$$
                $$int_0^alphaint_x^alphatext{y}^text{n}cdotsum_{text{k}=0}^inftyfrac{x^text{k}cdottext{y}^{text{k}left(text{n}-2right)}}{text{k}!}spacetext{d}text{y}spacetext{d}x=$$
                $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}int_x^alphatext{y}^text{n}cdottext{y}^{text{k}left(text{n}-2right)}spacetext{d}text{y}right}spacetext{d}x=$$
                $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}int_x^alphatext{y}^{text{n}+text{k}left(text{n}-2right)}spacetext{d}text{y}right}spacetext{d}x=$$
                $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}cdotleft[frac{text{y}^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}right]_x^alpharight}spacetext{d}x=$$
                $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}cdotleft(frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}-frac{x^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}right)right}spacetext{d}x=$$
                $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotint_0^alpha x^text{k}spacetext{d}x-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotint_0^alpha x^{1+text{n}+text{k}left(text{n}-1right)}spacetext{d}xright}=$$
                $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{1+text{k}}}{1+text{k}}-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{1+1+text{n}+text{k}left(text{n}-1right)}}{1+1+text{n}+text{k}left(text{n}-1right)}right}=$$
                $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{1}{1+text{k}}-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{2+text{n}+text{k}left(text{n}-1right)}right}=$$
                $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotleft{frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{1+text{k}}-frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{2+text{n}+text{k}left(text{n}-1right)}right}tag3$$



                When $alpha=1$, we get:



                $$mathcal{I}_text{n}left(alpharight):=int_0^1int_x^1text{y}^text{n}cdotexpleft(xcdottext{y}^{text{n}-2}right)spacetext{d}text{y}spacetext{d}x=$$
                $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotleft{frac{1}{1+text{k}}-frac{1}{2+text{n}+text{k}left(text{n}-1right)}right}=$$
                $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{k}}cdotfrac{1}{2+text{n}+text{k}left(text{n}-1right)}tag4$$






                share|cite|improve this answer


























                  2












                  2








                  2






                  Well, solving a much more general problem:



                  $$mathcal{I}_text{n}left(alpharight):=int_0^alphaint_x^alphatext{y}^text{n}cdotexpleft(xcdottext{y}^{text{n}-2}right)spacetext{d}text{y}spacetext{d}xtag1$$



                  Using that (for all $x$):



                  $$expleft(xright)=sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}tag2$$



                  We can write:



                  $$mathcal{I}_text{n}left(alpharight)=int_0^alphaint_x^alphatext{y}^text{n}cdotsum_{text{k}=0}^inftyfrac{left(xcdottext{y}^{text{n}-2}right)^text{k}}{text{k}!}spacetext{d}text{y}spacetext{d}x=$$
                  $$int_0^alphaint_x^alphatext{y}^text{n}cdotsum_{text{k}=0}^inftyfrac{x^text{k}cdottext{y}^{text{k}left(text{n}-2right)}}{text{k}!}spacetext{d}text{y}spacetext{d}x=$$
                  $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}int_x^alphatext{y}^text{n}cdottext{y}^{text{k}left(text{n}-2right)}spacetext{d}text{y}right}spacetext{d}x=$$
                  $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}int_x^alphatext{y}^{text{n}+text{k}left(text{n}-2right)}spacetext{d}text{y}right}spacetext{d}x=$$
                  $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}cdotleft[frac{text{y}^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}right]_x^alpharight}spacetext{d}x=$$
                  $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}cdotleft(frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}-frac{x^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}right)right}spacetext{d}x=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotint_0^alpha x^text{k}spacetext{d}x-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotint_0^alpha x^{1+text{n}+text{k}left(text{n}-1right)}spacetext{d}xright}=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{1+text{k}}}{1+text{k}}-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{1+1+text{n}+text{k}left(text{n}-1right)}}{1+1+text{n}+text{k}left(text{n}-1right)}right}=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{1}{1+text{k}}-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{2+text{n}+text{k}left(text{n}-1right)}right}=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotleft{frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{1+text{k}}-frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{2+text{n}+text{k}left(text{n}-1right)}right}tag3$$



                  When $alpha=1$, we get:



                  $$mathcal{I}_text{n}left(alpharight):=int_0^1int_x^1text{y}^text{n}cdotexpleft(xcdottext{y}^{text{n}-2}right)spacetext{d}text{y}spacetext{d}x=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotleft{frac{1}{1+text{k}}-frac{1}{2+text{n}+text{k}left(text{n}-1right)}right}=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{k}}cdotfrac{1}{2+text{n}+text{k}left(text{n}-1right)}tag4$$






                  share|cite|improve this answer














                  Well, solving a much more general problem:



                  $$mathcal{I}_text{n}left(alpharight):=int_0^alphaint_x^alphatext{y}^text{n}cdotexpleft(xcdottext{y}^{text{n}-2}right)spacetext{d}text{y}spacetext{d}xtag1$$



                  Using that (for all $x$):



                  $$expleft(xright)=sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}tag2$$



                  We can write:



                  $$mathcal{I}_text{n}left(alpharight)=int_0^alphaint_x^alphatext{y}^text{n}cdotsum_{text{k}=0}^inftyfrac{left(xcdottext{y}^{text{n}-2}right)^text{k}}{text{k}!}spacetext{d}text{y}spacetext{d}x=$$
                  $$int_0^alphaint_x^alphatext{y}^text{n}cdotsum_{text{k}=0}^inftyfrac{x^text{k}cdottext{y}^{text{k}left(text{n}-2right)}}{text{k}!}spacetext{d}text{y}spacetext{d}x=$$
                  $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}int_x^alphatext{y}^text{n}cdottext{y}^{text{k}left(text{n}-2right)}spacetext{d}text{y}right}spacetext{d}x=$$
                  $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}int_x^alphatext{y}^{text{n}+text{k}left(text{n}-2right)}spacetext{d}text{y}right}spacetext{d}x=$$
                  $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}cdotleft[frac{text{y}^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}right]_x^alpharight}spacetext{d}x=$$
                  $$int_0^alphaleft{sum_{text{k}=0}^inftyfrac{x^text{k}}{text{k}!}cdotleft(frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}-frac{x^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}right)right}spacetext{d}x=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotint_0^alpha x^text{k}spacetext{d}x-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotint_0^alpha x^{1+text{n}+text{k}left(text{n}-1right)}spacetext{d}xright}=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{1+text{n}+text{k}left(text{n}-2right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{1+text{k}}}{1+text{k}}-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{1+1+text{n}+text{k}left(text{n}-1right)}}{1+1+text{n}+text{k}left(text{n}-1right)}right}=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotleft{frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{1}{1+text{k}}-frac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotfrac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{2+text{n}+text{k}left(text{n}-1right)}right}=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotleft{frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{1+text{k}}-frac{alpha^{2+text{n}+text{k}left(text{n}-1right)}}{2+text{n}+text{k}left(text{n}-1right)}right}tag3$$



                  When $alpha=1$, we get:



                  $$mathcal{I}_text{n}left(alpharight):=int_0^1int_x^1text{y}^text{n}cdotexpleft(xcdottext{y}^{text{n}-2}right)spacetext{d}text{y}spacetext{d}x=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{n}+text{k}left(text{n}-2right)}cdotleft{frac{1}{1+text{k}}-frac{1}{2+text{n}+text{k}left(text{n}-1right)}right}=$$
                  $$sum_{text{k}=0}^inftyfrac{1}{text{k}!}cdotfrac{1}{1+text{k}}cdotfrac{1}{2+text{n}+text{k}left(text{n}-1right)}tag4$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 7 at 20:05

























                  answered Jan 6 at 20:52









                  JanJan

                  21.7k31240




                  21.7k31240






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064163%2fsolve-the-integral-int-01-int1-xy4exy2dydx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Mario Kart Wii

                      The Binding of Isaac: Rebirth/Afterbirth

                      What does “Dominus providebit” mean?