How do I compute the power spectral density knowing the input signal autocorrelation modulated by a cosine...
I have the following system:
$$S(t) = X(t) cdot d(t)$$
where
$R_{XX}(tau)=frac{1}{2pi}Sa(frac{tau}{2})cos(3tau)$ and $d(t)=cos(2t + theta)$ where $theta sim U[0,2pi)$ and is independent of $X(t)$
I would like to compute $R_{SS}(tau)$.
Normally, I would think to be given the autocorrelation of $d$, then I could apply the Winer-Khintchine theorem and using the fact that multiplication in time domain is convolution in frequency domain. But, I am stumped where to begin given that I am given the autocorrelation of X(t) but not d(t).
$R_{SS}(t,tau)=E[S(t)S(t+tau)]$
$=E[X(t)d(t)X(t+tau)d(t+tau)]$
$=E[X(t)X(t+tau) d(t)d(t+tau)]$
$=E[X(t)X(t+tau)]E[d(t)d(t+tau)]$ via independence
$=R_{SS}(tau)E[d(t)d(t+tau)]$
Attempting to solve for
$R_{dd}=E[d(t)d(t+tau)]$,
$E[cos(2t+theta)cos(2(t+tau)+theta)]$
Using product identities, I get,
$frac{1}{2}E[cos(4t + 2theta + 2tau)]$ which I believe is zero.
stochastic-processes fourier-transform
|
show 5 more comments
I have the following system:
$$S(t) = X(t) cdot d(t)$$
where
$R_{XX}(tau)=frac{1}{2pi}Sa(frac{tau}{2})cos(3tau)$ and $d(t)=cos(2t + theta)$ where $theta sim U[0,2pi)$ and is independent of $X(t)$
I would like to compute $R_{SS}(tau)$.
Normally, I would think to be given the autocorrelation of $d$, then I could apply the Winer-Khintchine theorem and using the fact that multiplication in time domain is convolution in frequency domain. But, I am stumped where to begin given that I am given the autocorrelation of X(t) but not d(t).
$R_{SS}(t,tau)=E[S(t)S(t+tau)]$
$=E[X(t)d(t)X(t+tau)d(t+tau)]$
$=E[X(t)X(t+tau) d(t)d(t+tau)]$
$=E[X(t)X(t+tau)]E[d(t)d(t+tau)]$ via independence
$=R_{SS}(tau)E[d(t)d(t+tau)]$
Attempting to solve for
$R_{dd}=E[d(t)d(t+tau)]$,
$E[cos(2t+theta)cos(2(t+tau)+theta)]$
Using product identities, I get,
$frac{1}{2}E[cos(4t + 2theta + 2tau)]$ which I believe is zero.
stochastic-processes fourier-transform
At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
– reuns
Jan 6 at 17:51
I dont have U though, just the autocorrelation of U.
– Avedis
Jan 6 at 18:15
You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
– reuns
Jan 6 at 19:33
1
$cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
– reuns
Jan 6 at 20:32
1
$E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
– reuns
Jan 6 at 23:22
|
show 5 more comments
I have the following system:
$$S(t) = X(t) cdot d(t)$$
where
$R_{XX}(tau)=frac{1}{2pi}Sa(frac{tau}{2})cos(3tau)$ and $d(t)=cos(2t + theta)$ where $theta sim U[0,2pi)$ and is independent of $X(t)$
I would like to compute $R_{SS}(tau)$.
Normally, I would think to be given the autocorrelation of $d$, then I could apply the Winer-Khintchine theorem and using the fact that multiplication in time domain is convolution in frequency domain. But, I am stumped where to begin given that I am given the autocorrelation of X(t) but not d(t).
$R_{SS}(t,tau)=E[S(t)S(t+tau)]$
$=E[X(t)d(t)X(t+tau)d(t+tau)]$
$=E[X(t)X(t+tau) d(t)d(t+tau)]$
$=E[X(t)X(t+tau)]E[d(t)d(t+tau)]$ via independence
$=R_{SS}(tau)E[d(t)d(t+tau)]$
Attempting to solve for
$R_{dd}=E[d(t)d(t+tau)]$,
$E[cos(2t+theta)cos(2(t+tau)+theta)]$
Using product identities, I get,
$frac{1}{2}E[cos(4t + 2theta + 2tau)]$ which I believe is zero.
stochastic-processes fourier-transform
I have the following system:
$$S(t) = X(t) cdot d(t)$$
where
$R_{XX}(tau)=frac{1}{2pi}Sa(frac{tau}{2})cos(3tau)$ and $d(t)=cos(2t + theta)$ where $theta sim U[0,2pi)$ and is independent of $X(t)$
I would like to compute $R_{SS}(tau)$.
Normally, I would think to be given the autocorrelation of $d$, then I could apply the Winer-Khintchine theorem and using the fact that multiplication in time domain is convolution in frequency domain. But, I am stumped where to begin given that I am given the autocorrelation of X(t) but not d(t).
$R_{SS}(t,tau)=E[S(t)S(t+tau)]$
$=E[X(t)d(t)X(t+tau)d(t+tau)]$
$=E[X(t)X(t+tau) d(t)d(t+tau)]$
$=E[X(t)X(t+tau)]E[d(t)d(t+tau)]$ via independence
$=R_{SS}(tau)E[d(t)d(t+tau)]$
Attempting to solve for
$R_{dd}=E[d(t)d(t+tau)]$,
$E[cos(2t+theta)cos(2(t+tau)+theta)]$
Using product identities, I get,
$frac{1}{2}E[cos(4t + 2theta + 2tau)]$ which I believe is zero.
stochastic-processes fourier-transform
stochastic-processes fourier-transform
edited Jan 6 at 21:23
Avedis
asked Jan 6 at 17:39
AvedisAvedis
476
476
At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
– reuns
Jan 6 at 17:51
I dont have U though, just the autocorrelation of U.
– Avedis
Jan 6 at 18:15
You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
– reuns
Jan 6 at 19:33
1
$cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
– reuns
Jan 6 at 20:32
1
$E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
– reuns
Jan 6 at 23:22
|
show 5 more comments
At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
– reuns
Jan 6 at 17:51
I dont have U though, just the autocorrelation of U.
– Avedis
Jan 6 at 18:15
You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
– reuns
Jan 6 at 19:33
1
$cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
– reuns
Jan 6 at 20:32
1
$E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
– reuns
Jan 6 at 23:22
At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
– reuns
Jan 6 at 17:51
At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
– reuns
Jan 6 at 17:51
I dont have U though, just the autocorrelation of U.
– Avedis
Jan 6 at 18:15
I dont have U though, just the autocorrelation of U.
– Avedis
Jan 6 at 18:15
You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
– reuns
Jan 6 at 19:33
You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
– reuns
Jan 6 at 19:33
1
1
$cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
– reuns
Jan 6 at 20:32
$cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
– reuns
Jan 6 at 20:32
1
1
$E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
– reuns
Jan 6 at 23:22
$E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
– reuns
Jan 6 at 23:22
|
show 5 more comments
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064160%2fhow-do-i-compute-the-power-spectral-density-knowing-the-input-signal-autocorrela%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064160%2fhow-do-i-compute-the-power-spectral-density-knowing-the-input-signal-autocorrela%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
At first what you can define is $r_{SS}(t,tau)=mathbb{E}[S(t)overline{S(t+tau)}]$. If $U,V$ are independent then $mathbb{E}[UV] = mathbb{E}[U]mathbb{E}[V]$. If $r_{SS}(t,tau)$ doesn't depend on $t$ (eg. when $S$ is stationary) then you set $R_{SS}(tau) = r_{SS}(0,tau)$
– reuns
Jan 6 at 17:51
I dont have U though, just the autocorrelation of U.
– Avedis
Jan 6 at 18:15
You have $mathbb{E}[U]$ with $U = X(t) X(t+tau)$ (assuming $mathbb{E}[X(t)] = 0$, otherwise substract it from $X(t)$). $overline{z}$ is the complex conjugate, if $X(t)$ is real it is unnecessary
– reuns
Jan 6 at 19:33
1
$cos A cos B =frac12 cos (A+B)+frac12cos (A-B)$. In the latter $2t+theta$ disappear so it is constant, the former is zero mean
– reuns
Jan 6 at 20:32
1
$E[cos(2t+theta)cos(2(t+tau)+theta)] = frac{1}{2}E[cos(2tau)]+frac{1}{2}E[cos(4t + 2theta + 2tau)]= frac{1}{2}cos(2tau)+ 0$
– reuns
Jan 6 at 23:22