Question for covariance stationary process
$begingroup$
Given a random variable Y with characteristic function
C(w) = E[exp(iwy)] . Let the random process X(t) be defined as X(t)=cos(wt+y). Show that the process X(t) is covariance stationary if C(1)-C(2)=0.
I have tried expanding the characteristic function in the trigonometric form and using the result to prove stationarity but I'm still unable to solve it. Any hint will be helpful.
stochastic-processes covariance stationary-processes
$endgroup$
add a comment |
$begingroup$
Given a random variable Y with characteristic function
C(w) = E[exp(iwy)] . Let the random process X(t) be defined as X(t)=cos(wt+y). Show that the process X(t) is covariance stationary if C(1)-C(2)=0.
I have tried expanding the characteristic function in the trigonometric form and using the result to prove stationarity but I'm still unable to solve it. Any hint will be helpful.
stochastic-processes covariance stationary-processes
$endgroup$
add a comment |
$begingroup$
Given a random variable Y with characteristic function
C(w) = E[exp(iwy)] . Let the random process X(t) be defined as X(t)=cos(wt+y). Show that the process X(t) is covariance stationary if C(1)-C(2)=0.
I have tried expanding the characteristic function in the trigonometric form and using the result to prove stationarity but I'm still unable to solve it. Any hint will be helpful.
stochastic-processes covariance stationary-processes
$endgroup$
Given a random variable Y with characteristic function
C(w) = E[exp(iwy)] . Let the random process X(t) be defined as X(t)=cos(wt+y). Show that the process X(t) is covariance stationary if C(1)-C(2)=0.
I have tried expanding the characteristic function in the trigonometric form and using the result to prove stationarity but I'm still unable to solve it. Any hint will be helpful.
stochastic-processes covariance stationary-processes
stochastic-processes covariance stationary-processes
asked Jan 12 at 18:57
Kc17Kc17
346
346
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint
$$E[X(t)]{=E[cos(wt+y)]\=Eleft[{e^{iwt+iy}+e^{-iwt-iy}over 2}right]\=text{const}}$$and$$E[X(t_1)X(t_2)]{=E[cos(wt_2+y)cos(wt_1+y)]\={1over 2}E[cos(w(t_2-t_1))]\+{1over2}E[cos (wt_1+wt_2+2y)]}$$since $E[X(t_1)X(t_2)]$ must be a function of $t_1-t_2$ so $E[cos (wt_1+wt_2+2y)]=0$. The rest is easy.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071252%2fquestion-for-covariance-stationary-process%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint
$$E[X(t)]{=E[cos(wt+y)]\=Eleft[{e^{iwt+iy}+e^{-iwt-iy}over 2}right]\=text{const}}$$and$$E[X(t_1)X(t_2)]{=E[cos(wt_2+y)cos(wt_1+y)]\={1over 2}E[cos(w(t_2-t_1))]\+{1over2}E[cos (wt_1+wt_2+2y)]}$$since $E[X(t_1)X(t_2)]$ must be a function of $t_1-t_2$ so $E[cos (wt_1+wt_2+2y)]=0$. The rest is easy.
$endgroup$
add a comment |
$begingroup$
Hint
$$E[X(t)]{=E[cos(wt+y)]\=Eleft[{e^{iwt+iy}+e^{-iwt-iy}over 2}right]\=text{const}}$$and$$E[X(t_1)X(t_2)]{=E[cos(wt_2+y)cos(wt_1+y)]\={1over 2}E[cos(w(t_2-t_1))]\+{1over2}E[cos (wt_1+wt_2+2y)]}$$since $E[X(t_1)X(t_2)]$ must be a function of $t_1-t_2$ so $E[cos (wt_1+wt_2+2y)]=0$. The rest is easy.
$endgroup$
add a comment |
$begingroup$
Hint
$$E[X(t)]{=E[cos(wt+y)]\=Eleft[{e^{iwt+iy}+e^{-iwt-iy}over 2}right]\=text{const}}$$and$$E[X(t_1)X(t_2)]{=E[cos(wt_2+y)cos(wt_1+y)]\={1over 2}E[cos(w(t_2-t_1))]\+{1over2}E[cos (wt_1+wt_2+2y)]}$$since $E[X(t_1)X(t_2)]$ must be a function of $t_1-t_2$ so $E[cos (wt_1+wt_2+2y)]=0$. The rest is easy.
$endgroup$
Hint
$$E[X(t)]{=E[cos(wt+y)]\=Eleft[{e^{iwt+iy}+e^{-iwt-iy}over 2}right]\=text{const}}$$and$$E[X(t_1)X(t_2)]{=E[cos(wt_2+y)cos(wt_1+y)]\={1over 2}E[cos(w(t_2-t_1))]\+{1over2}E[cos (wt_1+wt_2+2y)]}$$since $E[X(t_1)X(t_2)]$ must be a function of $t_1-t_2$ so $E[cos (wt_1+wt_2+2y)]=0$. The rest is easy.
answered Jan 12 at 19:07
Mostafa AyazMostafa Ayaz
15.3k3939
15.3k3939
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071252%2fquestion-for-covariance-stationary-process%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown