What value of the constant $alpha$ makes $Y$ and $Z$ uncorrelated?
$begingroup$
The random variables $X_1$ and $X_2$ have means 1 and 2 respectively, with same variance 4 and covariance 0.8. Let $Y = X_1 − 3X_2$ and $Z = alpha X_1 + X_2$. What value of the constant α makes Y and Z uncorrelated?
probability
$endgroup$
add a comment |
$begingroup$
The random variables $X_1$ and $X_2$ have means 1 and 2 respectively, with same variance 4 and covariance 0.8. Let $Y = X_1 − 3X_2$ and $Z = alpha X_1 + X_2$. What value of the constant α makes Y and Z uncorrelated?
probability
$endgroup$
add a comment |
$begingroup$
The random variables $X_1$ and $X_2$ have means 1 and 2 respectively, with same variance 4 and covariance 0.8. Let $Y = X_1 − 3X_2$ and $Z = alpha X_1 + X_2$. What value of the constant α makes Y and Z uncorrelated?
probability
$endgroup$
The random variables $X_1$ and $X_2$ have means 1 and 2 respectively, with same variance 4 and covariance 0.8. Let $Y = X_1 − 3X_2$ and $Z = alpha X_1 + X_2$. What value of the constant α makes Y and Z uncorrelated?
probability
probability
edited Jan 25 at 8:35
Mark Jacon
asked Jan 24 at 12:07
Mark JaconMark Jacon
1127
1127
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It is given that covariance of $X_1$ and $X_2$ is $0.8$ Hence $EX_1X_2-(EX_1) (EX_2)=0.8$. So $EX_1X_2 =0.8+(1)(2)=2.8$. Now can you proceed?
$endgroup$
$begingroup$
Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
$endgroup$
– Mark Jacon
Jan 24 at 13:36
1
$begingroup$
$EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
$endgroup$
– Kavi Rama Murthy
Jan 24 at 23:13
$begingroup$
Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
$endgroup$
– Mark Jacon
Jan 25 at 8:17
1
$begingroup$
$EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 8:19
add a comment |
$begingroup$
Solve:
$E[X_1]=1$, $E[X_2]=2$, $operatorname{Var}(X_1)=4$, $operatorname{Var}(X_2)=4$ and $operatorname{Cov}(X_1,X_2)=0.8$
$Y, Z$ are uncorrelated if $operatorname{Cov}(Y,Z)=0$ where $operatorname{Cov}(Y,Z) = E[YZ] − E[Y]E[Z]$.
$E[Y]=E[X_1]-3E[X_2]=1-3*2=-5$
$E[Z]=alpha E[X_1]+E[X_2]=alpha+2$
$Cov(X_1,X_2)=E[X_1X_2]-E[X_1]*E[X_2]=0.8$ so $E[X_1X_2]=0.8+2*1=2.8$
$E[X_1^2]=Var(X_1)+(E[X_1])^2=4+1^2=5$ and $E[X_2^2]=Var(X_2)+(E[X_2])^2=4+2^2=8$
$E[YZ]=E[(X_1 − 3X_2)(alpha X_1 + X_2)]=alpha E[X_1^2]+(1-3 alpha)E[X_1X_2]-3E[X_2^2]=5alpha+(1-3alpha)*2.8-3*8$
$Cov(Y,Z)=E[YZ] − E[Y]E[Z]=0$, $5alpha+(1-3alpha)*2.8-3*8-(-5)*(2+alpha)=0$, $alpha=7$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085802%2fwhat-value-of-the-constant-alpha-makes-y-and-z-uncorrelated%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is given that covariance of $X_1$ and $X_2$ is $0.8$ Hence $EX_1X_2-(EX_1) (EX_2)=0.8$. So $EX_1X_2 =0.8+(1)(2)=2.8$. Now can you proceed?
$endgroup$
$begingroup$
Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
$endgroup$
– Mark Jacon
Jan 24 at 13:36
1
$begingroup$
$EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
$endgroup$
– Kavi Rama Murthy
Jan 24 at 23:13
$begingroup$
Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
$endgroup$
– Mark Jacon
Jan 25 at 8:17
1
$begingroup$
$EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 8:19
add a comment |
$begingroup$
It is given that covariance of $X_1$ and $X_2$ is $0.8$ Hence $EX_1X_2-(EX_1) (EX_2)=0.8$. So $EX_1X_2 =0.8+(1)(2)=2.8$. Now can you proceed?
$endgroup$
$begingroup$
Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
$endgroup$
– Mark Jacon
Jan 24 at 13:36
1
$begingroup$
$EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
$endgroup$
– Kavi Rama Murthy
Jan 24 at 23:13
$begingroup$
Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
$endgroup$
– Mark Jacon
Jan 25 at 8:17
1
$begingroup$
$EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 8:19
add a comment |
$begingroup$
It is given that covariance of $X_1$ and $X_2$ is $0.8$ Hence $EX_1X_2-(EX_1) (EX_2)=0.8$. So $EX_1X_2 =0.8+(1)(2)=2.8$. Now can you proceed?
$endgroup$
It is given that covariance of $X_1$ and $X_2$ is $0.8$ Hence $EX_1X_2-(EX_1) (EX_2)=0.8$. So $EX_1X_2 =0.8+(1)(2)=2.8$. Now can you proceed?
answered Jan 24 at 12:18
Kavi Rama MurthyKavi Rama Murthy
65.4k42766
65.4k42766
$begingroup$
Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
$endgroup$
– Mark Jacon
Jan 24 at 13:36
1
$begingroup$
$EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
$endgroup$
– Kavi Rama Murthy
Jan 24 at 23:13
$begingroup$
Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
$endgroup$
– Mark Jacon
Jan 25 at 8:17
1
$begingroup$
$EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 8:19
add a comment |
$begingroup$
Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
$endgroup$
– Mark Jacon
Jan 24 at 13:36
1
$begingroup$
$EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
$endgroup$
– Kavi Rama Murthy
Jan 24 at 23:13
$begingroup$
Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
$endgroup$
– Mark Jacon
Jan 25 at 8:17
1
$begingroup$
$EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 8:19
$begingroup$
Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
$endgroup$
– Mark Jacon
Jan 24 at 13:36
$begingroup$
Now, how can I relate $E[X_1X_2]$ with $E[YZ]$?
$endgroup$
– Mark Jacon
Jan 24 at 13:36
1
1
$begingroup$
$EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
$endgroup$
– Kavi Rama Murthy
Jan 24 at 23:13
$begingroup$
$EYZ=E(X_1-3X_2)(alpha X_1+X_2)=alpha EX_1^{2}-3alpha EX_1X_2+EX_1X_2-3EX_2^{2}$
$endgroup$
– Kavi Rama Murthy
Jan 24 at 23:13
$begingroup$
Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
$endgroup$
– Mark Jacon
Jan 25 at 8:17
$begingroup$
Ok thank you, now the last question, how can I calculate $E[X_1^2]$ and $E[X_2^2]$, then I can complete the question :)
$endgroup$
– Mark Jacon
Jan 25 at 8:17
1
1
$begingroup$
$EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 8:19
$begingroup$
$EX_1^{2}=var(X_1)+(EX_1)^{2}=4+1=5$. similarly, $EX_2^{2}=4+4=8$.
$endgroup$
– Kavi Rama Murthy
Jan 25 at 8:19
add a comment |
$begingroup$
Solve:
$E[X_1]=1$, $E[X_2]=2$, $operatorname{Var}(X_1)=4$, $operatorname{Var}(X_2)=4$ and $operatorname{Cov}(X_1,X_2)=0.8$
$Y, Z$ are uncorrelated if $operatorname{Cov}(Y,Z)=0$ where $operatorname{Cov}(Y,Z) = E[YZ] − E[Y]E[Z]$.
$E[Y]=E[X_1]-3E[X_2]=1-3*2=-5$
$E[Z]=alpha E[X_1]+E[X_2]=alpha+2$
$Cov(X_1,X_2)=E[X_1X_2]-E[X_1]*E[X_2]=0.8$ so $E[X_1X_2]=0.8+2*1=2.8$
$E[X_1^2]=Var(X_1)+(E[X_1])^2=4+1^2=5$ and $E[X_2^2]=Var(X_2)+(E[X_2])^2=4+2^2=8$
$E[YZ]=E[(X_1 − 3X_2)(alpha X_1 + X_2)]=alpha E[X_1^2]+(1-3 alpha)E[X_1X_2]-3E[X_2^2]=5alpha+(1-3alpha)*2.8-3*8$
$Cov(Y,Z)=E[YZ] − E[Y]E[Z]=0$, $5alpha+(1-3alpha)*2.8-3*8-(-5)*(2+alpha)=0$, $alpha=7$
$endgroup$
add a comment |
$begingroup$
Solve:
$E[X_1]=1$, $E[X_2]=2$, $operatorname{Var}(X_1)=4$, $operatorname{Var}(X_2)=4$ and $operatorname{Cov}(X_1,X_2)=0.8$
$Y, Z$ are uncorrelated if $operatorname{Cov}(Y,Z)=0$ where $operatorname{Cov}(Y,Z) = E[YZ] − E[Y]E[Z]$.
$E[Y]=E[X_1]-3E[X_2]=1-3*2=-5$
$E[Z]=alpha E[X_1]+E[X_2]=alpha+2$
$Cov(X_1,X_2)=E[X_1X_2]-E[X_1]*E[X_2]=0.8$ so $E[X_1X_2]=0.8+2*1=2.8$
$E[X_1^2]=Var(X_1)+(E[X_1])^2=4+1^2=5$ and $E[X_2^2]=Var(X_2)+(E[X_2])^2=4+2^2=8$
$E[YZ]=E[(X_1 − 3X_2)(alpha X_1 + X_2)]=alpha E[X_1^2]+(1-3 alpha)E[X_1X_2]-3E[X_2^2]=5alpha+(1-3alpha)*2.8-3*8$
$Cov(Y,Z)=E[YZ] − E[Y]E[Z]=0$, $5alpha+(1-3alpha)*2.8-3*8-(-5)*(2+alpha)=0$, $alpha=7$
$endgroup$
add a comment |
$begingroup$
Solve:
$E[X_1]=1$, $E[X_2]=2$, $operatorname{Var}(X_1)=4$, $operatorname{Var}(X_2)=4$ and $operatorname{Cov}(X_1,X_2)=0.8$
$Y, Z$ are uncorrelated if $operatorname{Cov}(Y,Z)=0$ where $operatorname{Cov}(Y,Z) = E[YZ] − E[Y]E[Z]$.
$E[Y]=E[X_1]-3E[X_2]=1-3*2=-5$
$E[Z]=alpha E[X_1]+E[X_2]=alpha+2$
$Cov(X_1,X_2)=E[X_1X_2]-E[X_1]*E[X_2]=0.8$ so $E[X_1X_2]=0.8+2*1=2.8$
$E[X_1^2]=Var(X_1)+(E[X_1])^2=4+1^2=5$ and $E[X_2^2]=Var(X_2)+(E[X_2])^2=4+2^2=8$
$E[YZ]=E[(X_1 − 3X_2)(alpha X_1 + X_2)]=alpha E[X_1^2]+(1-3 alpha)E[X_1X_2]-3E[X_2^2]=5alpha+(1-3alpha)*2.8-3*8$
$Cov(Y,Z)=E[YZ] − E[Y]E[Z]=0$, $5alpha+(1-3alpha)*2.8-3*8-(-5)*(2+alpha)=0$, $alpha=7$
$endgroup$
Solve:
$E[X_1]=1$, $E[X_2]=2$, $operatorname{Var}(X_1)=4$, $operatorname{Var}(X_2)=4$ and $operatorname{Cov}(X_1,X_2)=0.8$
$Y, Z$ are uncorrelated if $operatorname{Cov}(Y,Z)=0$ where $operatorname{Cov}(Y,Z) = E[YZ] − E[Y]E[Z]$.
$E[Y]=E[X_1]-3E[X_2]=1-3*2=-5$
$E[Z]=alpha E[X_1]+E[X_2]=alpha+2$
$Cov(X_1,X_2)=E[X_1X_2]-E[X_1]*E[X_2]=0.8$ so $E[X_1X_2]=0.8+2*1=2.8$
$E[X_1^2]=Var(X_1)+(E[X_1])^2=4+1^2=5$ and $E[X_2^2]=Var(X_2)+(E[X_2])^2=4+2^2=8$
$E[YZ]=E[(X_1 − 3X_2)(alpha X_1 + X_2)]=alpha E[X_1^2]+(1-3 alpha)E[X_1X_2]-3E[X_2^2]=5alpha+(1-3alpha)*2.8-3*8$
$Cov(Y,Z)=E[YZ] − E[Y]E[Z]=0$, $5alpha+(1-3alpha)*2.8-3*8-(-5)*(2+alpha)=0$, $alpha=7$
answered Jan 25 at 8:40
Mark JaconMark Jacon
1127
1127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085802%2fwhat-value-of-the-constant-alpha-makes-y-and-z-uncorrelated%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown