Calculating improper integral $int limits_{0}^{infty}frac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x$
$begingroup$
I want to calculate the improper integral $displaystyle int
limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x$
$DeclareMathOperatorerf{erf}$
Therefore
begin{align}
I(b)&=limlimits_{bto0}left(displaystyle int limits_{b}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}xright) qquad forall binmathbb{R}:0<b<infty\
&=limlimits_{bto0}left(sqrt{pi} erf(sqrt{b}) right)=sqrt{pi}erf(sqrt{0})=sqrt{pi}
end{align}
This looks way to easy. Is this correct or am I missing something? Do you know a better way while using the following equation from our lectures?: $$displaystyle intlimits_0^infty e^{-x^2},mathrm{d}x=frac{1}{2}sqrt{pi}$$
integration definite-integrals improper-integrals
$endgroup$
add a comment |
$begingroup$
I want to calculate the improper integral $displaystyle int
limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x$
$DeclareMathOperatorerf{erf}$
Therefore
begin{align}
I(b)&=limlimits_{bto0}left(displaystyle int limits_{b}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}xright) qquad forall binmathbb{R}:0<b<infty\
&=limlimits_{bto0}left(sqrt{pi} erf(sqrt{b}) right)=sqrt{pi}erf(sqrt{0})=sqrt{pi}
end{align}
This looks way to easy. Is this correct or am I missing something? Do you know a better way while using the following equation from our lectures?: $$displaystyle intlimits_0^infty e^{-x^2},mathrm{d}x=frac{1}{2}sqrt{pi}$$
integration definite-integrals improper-integrals
$endgroup$
$begingroup$
I corrected that, thank you!
$endgroup$
– Doesbaddel
Jan 24 at 11:36
add a comment |
$begingroup$
I want to calculate the improper integral $displaystyle int
limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x$
$DeclareMathOperatorerf{erf}$
Therefore
begin{align}
I(b)&=limlimits_{bto0}left(displaystyle int limits_{b}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}xright) qquad forall binmathbb{R}:0<b<infty\
&=limlimits_{bto0}left(sqrt{pi} erf(sqrt{b}) right)=sqrt{pi}erf(sqrt{0})=sqrt{pi}
end{align}
This looks way to easy. Is this correct or am I missing something? Do you know a better way while using the following equation from our lectures?: $$displaystyle intlimits_0^infty e^{-x^2},mathrm{d}x=frac{1}{2}sqrt{pi}$$
integration definite-integrals improper-integrals
$endgroup$
I want to calculate the improper integral $displaystyle int
limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x$
$DeclareMathOperatorerf{erf}$
Therefore
begin{align}
I(b)&=limlimits_{bto0}left(displaystyle int limits_{b}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}xright) qquad forall binmathbb{R}:0<b<infty\
&=limlimits_{bto0}left(sqrt{pi} erf(sqrt{b}) right)=sqrt{pi}erf(sqrt{0})=sqrt{pi}
end{align}
This looks way to easy. Is this correct or am I missing something? Do you know a better way while using the following equation from our lectures?: $$displaystyle intlimits_0^infty e^{-x^2},mathrm{d}x=frac{1}{2}sqrt{pi}$$
integration definite-integrals improper-integrals
integration definite-integrals improper-integrals
edited Jan 24 at 12:23
Martin Sleziak
44.8k10119273
44.8k10119273
asked Jan 24 at 11:26
DoesbaddelDoesbaddel
34211
34211
$begingroup$
I corrected that, thank you!
$endgroup$
– Doesbaddel
Jan 24 at 11:36
add a comment |
$begingroup$
I corrected that, thank you!
$endgroup$
– Doesbaddel
Jan 24 at 11:36
$begingroup$
I corrected that, thank you!
$endgroup$
– Doesbaddel
Jan 24 at 11:36
$begingroup$
I corrected that, thank you!
$endgroup$
– Doesbaddel
Jan 24 at 11:36
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint:
Just substitute $x= u^2$. So, you get
$$int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du$$
$endgroup$
$begingroup$
Ok, so $int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du =2cdot frac{1}{2}sqrt{pi}=sqrt{pi}$ does the job?
$endgroup$
– Doesbaddel
Jan 24 at 11:44
$begingroup$
Yes, it is the famous Gaussian integral.
$endgroup$
– Larry
Jan 24 at 11:46
$begingroup$
@Doesbaddel : So ist es. :-)
$endgroup$
– trancelocation
Jan 24 at 11:46
$begingroup$
You've switched from Gamma function to Gaussian integral. Why do you need it, if Gaussian integral is calculated through Gamma function
$endgroup$
– Yauhen Mardan
Jan 24 at 11:47
1
$begingroup$
@YauhenMardan Because Doesbaddel asked exactly for something like this. Just read the post :-)
$endgroup$
– trancelocation
Jan 24 at 11:49
|
show 2 more comments
$begingroup$
It's Gamma function: $int_0^infty x^{1/2-1}e^{-x}dx=Г(1/2)=sqrt{pi}$
$endgroup$
1
$begingroup$
In particular $Gamma^2(1/2)=operatorname{B}(1/2,,1/2)=2int_0^{pi/2}dx=pi$, so we don't need to already know the Gaussian integral; in fact, this argument is one way to compute the Gaussian integral.
$endgroup$
– J.G.
Jan 24 at 12:32
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085767%2fcalculating-improper-integral-int-limits-0-infty-frac-mathrme-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
Just substitute $x= u^2$. So, you get
$$int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du$$
$endgroup$
$begingroup$
Ok, so $int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du =2cdot frac{1}{2}sqrt{pi}=sqrt{pi}$ does the job?
$endgroup$
– Doesbaddel
Jan 24 at 11:44
$begingroup$
Yes, it is the famous Gaussian integral.
$endgroup$
– Larry
Jan 24 at 11:46
$begingroup$
@Doesbaddel : So ist es. :-)
$endgroup$
– trancelocation
Jan 24 at 11:46
$begingroup$
You've switched from Gamma function to Gaussian integral. Why do you need it, if Gaussian integral is calculated through Gamma function
$endgroup$
– Yauhen Mardan
Jan 24 at 11:47
1
$begingroup$
@YauhenMardan Because Doesbaddel asked exactly for something like this. Just read the post :-)
$endgroup$
– trancelocation
Jan 24 at 11:49
|
show 2 more comments
$begingroup$
Hint:
Just substitute $x= u^2$. So, you get
$$int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du$$
$endgroup$
$begingroup$
Ok, so $int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du =2cdot frac{1}{2}sqrt{pi}=sqrt{pi}$ does the job?
$endgroup$
– Doesbaddel
Jan 24 at 11:44
$begingroup$
Yes, it is the famous Gaussian integral.
$endgroup$
– Larry
Jan 24 at 11:46
$begingroup$
@Doesbaddel : So ist es. :-)
$endgroup$
– trancelocation
Jan 24 at 11:46
$begingroup$
You've switched from Gamma function to Gaussian integral. Why do you need it, if Gaussian integral is calculated through Gamma function
$endgroup$
– Yauhen Mardan
Jan 24 at 11:47
1
$begingroup$
@YauhenMardan Because Doesbaddel asked exactly for something like this. Just read the post :-)
$endgroup$
– trancelocation
Jan 24 at 11:49
|
show 2 more comments
$begingroup$
Hint:
Just substitute $x= u^2$. So, you get
$$int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du$$
$endgroup$
Hint:
Just substitute $x= u^2$. So, you get
$$int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du$$
answered Jan 24 at 11:31
trancelocationtrancelocation
12.6k1826
12.6k1826
$begingroup$
Ok, so $int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du =2cdot frac{1}{2}sqrt{pi}=sqrt{pi}$ does the job?
$endgroup$
– Doesbaddel
Jan 24 at 11:44
$begingroup$
Yes, it is the famous Gaussian integral.
$endgroup$
– Larry
Jan 24 at 11:46
$begingroup$
@Doesbaddel : So ist es. :-)
$endgroup$
– trancelocation
Jan 24 at 11:46
$begingroup$
You've switched from Gamma function to Gaussian integral. Why do you need it, if Gaussian integral is calculated through Gamma function
$endgroup$
– Yauhen Mardan
Jan 24 at 11:47
1
$begingroup$
@YauhenMardan Because Doesbaddel asked exactly for something like this. Just read the post :-)
$endgroup$
– trancelocation
Jan 24 at 11:49
|
show 2 more comments
$begingroup$
Ok, so $int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du =2cdot frac{1}{2}sqrt{pi}=sqrt{pi}$ does the job?
$endgroup$
– Doesbaddel
Jan 24 at 11:44
$begingroup$
Yes, it is the famous Gaussian integral.
$endgroup$
– Larry
Jan 24 at 11:46
$begingroup$
@Doesbaddel : So ist es. :-)
$endgroup$
– trancelocation
Jan 24 at 11:46
$begingroup$
You've switched from Gamma function to Gaussian integral. Why do you need it, if Gaussian integral is calculated through Gamma function
$endgroup$
– Yauhen Mardan
Jan 24 at 11:47
1
$begingroup$
@YauhenMardan Because Doesbaddel asked exactly for something like this. Just read the post :-)
$endgroup$
– trancelocation
Jan 24 at 11:49
$begingroup$
Ok, so $int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du =2cdot frac{1}{2}sqrt{pi}=sqrt{pi}$ does the job?
$endgroup$
– Doesbaddel
Jan 24 at 11:44
$begingroup$
Ok, so $int limits_{0}^{infty}dfrac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x =2int_0^{infty}e^{-u^2}du =2cdot frac{1}{2}sqrt{pi}=sqrt{pi}$ does the job?
$endgroup$
– Doesbaddel
Jan 24 at 11:44
$begingroup$
Yes, it is the famous Gaussian integral.
$endgroup$
– Larry
Jan 24 at 11:46
$begingroup$
Yes, it is the famous Gaussian integral.
$endgroup$
– Larry
Jan 24 at 11:46
$begingroup$
@Doesbaddel : So ist es. :-)
$endgroup$
– trancelocation
Jan 24 at 11:46
$begingroup$
@Doesbaddel : So ist es. :-)
$endgroup$
– trancelocation
Jan 24 at 11:46
$begingroup$
You've switched from Gamma function to Gaussian integral. Why do you need it, if Gaussian integral is calculated through Gamma function
$endgroup$
– Yauhen Mardan
Jan 24 at 11:47
$begingroup$
You've switched from Gamma function to Gaussian integral. Why do you need it, if Gaussian integral is calculated through Gamma function
$endgroup$
– Yauhen Mardan
Jan 24 at 11:47
1
1
$begingroup$
@YauhenMardan Because Doesbaddel asked exactly for something like this. Just read the post :-)
$endgroup$
– trancelocation
Jan 24 at 11:49
$begingroup$
@YauhenMardan Because Doesbaddel asked exactly for something like this. Just read the post :-)
$endgroup$
– trancelocation
Jan 24 at 11:49
|
show 2 more comments
$begingroup$
It's Gamma function: $int_0^infty x^{1/2-1}e^{-x}dx=Г(1/2)=sqrt{pi}$
$endgroup$
1
$begingroup$
In particular $Gamma^2(1/2)=operatorname{B}(1/2,,1/2)=2int_0^{pi/2}dx=pi$, so we don't need to already know the Gaussian integral; in fact, this argument is one way to compute the Gaussian integral.
$endgroup$
– J.G.
Jan 24 at 12:32
add a comment |
$begingroup$
It's Gamma function: $int_0^infty x^{1/2-1}e^{-x}dx=Г(1/2)=sqrt{pi}$
$endgroup$
1
$begingroup$
In particular $Gamma^2(1/2)=operatorname{B}(1/2,,1/2)=2int_0^{pi/2}dx=pi$, so we don't need to already know the Gaussian integral; in fact, this argument is one way to compute the Gaussian integral.
$endgroup$
– J.G.
Jan 24 at 12:32
add a comment |
$begingroup$
It's Gamma function: $int_0^infty x^{1/2-1}e^{-x}dx=Г(1/2)=sqrt{pi}$
$endgroup$
It's Gamma function: $int_0^infty x^{1/2-1}e^{-x}dx=Г(1/2)=sqrt{pi}$
answered Jan 24 at 11:42
Yauhen MardanYauhen Mardan
936
936
1
$begingroup$
In particular $Gamma^2(1/2)=operatorname{B}(1/2,,1/2)=2int_0^{pi/2}dx=pi$, so we don't need to already know the Gaussian integral; in fact, this argument is one way to compute the Gaussian integral.
$endgroup$
– J.G.
Jan 24 at 12:32
add a comment |
1
$begingroup$
In particular $Gamma^2(1/2)=operatorname{B}(1/2,,1/2)=2int_0^{pi/2}dx=pi$, so we don't need to already know the Gaussian integral; in fact, this argument is one way to compute the Gaussian integral.
$endgroup$
– J.G.
Jan 24 at 12:32
1
1
$begingroup$
In particular $Gamma^2(1/2)=operatorname{B}(1/2,,1/2)=2int_0^{pi/2}dx=pi$, so we don't need to already know the Gaussian integral; in fact, this argument is one way to compute the Gaussian integral.
$endgroup$
– J.G.
Jan 24 at 12:32
$begingroup$
In particular $Gamma^2(1/2)=operatorname{B}(1/2,,1/2)=2int_0^{pi/2}dx=pi$, so we don't need to already know the Gaussian integral; in fact, this argument is one way to compute the Gaussian integral.
$endgroup$
– J.G.
Jan 24 at 12:32
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085767%2fcalculating-improper-integral-int-limits-0-infty-frac-mathrme-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I corrected that, thank you!
$endgroup$
– Doesbaddel
Jan 24 at 11:36