Partition function for nonlinear sigma model












1












$begingroup$


Let $(M,g)$ and $(N,h)$ be Riemannian manifolds. The action for the nonlinear sigma model with base $M$ and target $N$ is simply the Dirichlet energy (i.e. harmonic map energy) for maps $phi:Mto N$:
$$
S(phi)=int_M|dphi|^2;dV_g.
$$

Critical points of $S$ are harmonic maps. For example, when the target $(N,h)$ is just $mathbb{R}$ with the standard metric, then critical points of $S$ are harmonic functions, i.e. those maps $phi:Mto mathbb{R}$ satisfying $Delta_gphi=0$.



The partition function for the nonlinear sigma model is formally given by the path integral
$$
Z=int e^{-S(phi)}; Dphi.
$$



Question: How can we rigorously define $Z$ for general target manifolds $(N,h)$?



Note that there are cases when $Z$ is well defined:



Special case: $(N,h)=(mathbb{R},g_{mathrm{std}})$ In this case, we can use zeta function regularization. The Minakshisundaram–Pleijel zeta function $zeta:mathbb{C}to mathbb{C}$ defined by
$$
zeta(s)=sum_{lambdainmathrm{Spec}(Delta_g)setminus {0}} |lambda|^{-s} qquadqquad text{for}qquad mathrm{Re}(s)>dim M/2
$$
is holomorphic for $mathrm{Re}(s)>dim M/2$ and analytically extends to a meromorphic function on all of $mathbb{C}$ which is regular at $s=0$. We then define the partition function by
$$
Z=det Delta_g^{-1}=mathrm{exp}(zeta'(0)).
$$

Can this method be extended to general target manifolds?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let $(M,g)$ and $(N,h)$ be Riemannian manifolds. The action for the nonlinear sigma model with base $M$ and target $N$ is simply the Dirichlet energy (i.e. harmonic map energy) for maps $phi:Mto N$:
    $$
    S(phi)=int_M|dphi|^2;dV_g.
    $$

    Critical points of $S$ are harmonic maps. For example, when the target $(N,h)$ is just $mathbb{R}$ with the standard metric, then critical points of $S$ are harmonic functions, i.e. those maps $phi:Mto mathbb{R}$ satisfying $Delta_gphi=0$.



    The partition function for the nonlinear sigma model is formally given by the path integral
    $$
    Z=int e^{-S(phi)}; Dphi.
    $$



    Question: How can we rigorously define $Z$ for general target manifolds $(N,h)$?



    Note that there are cases when $Z$ is well defined:



    Special case: $(N,h)=(mathbb{R},g_{mathrm{std}})$ In this case, we can use zeta function regularization. The Minakshisundaram–Pleijel zeta function $zeta:mathbb{C}to mathbb{C}$ defined by
    $$
    zeta(s)=sum_{lambdainmathrm{Spec}(Delta_g)setminus {0}} |lambda|^{-s} qquadqquad text{for}qquad mathrm{Re}(s)>dim M/2
    $$
    is holomorphic for $mathrm{Re}(s)>dim M/2$ and analytically extends to a meromorphic function on all of $mathbb{C}$ which is regular at $s=0$. We then define the partition function by
    $$
    Z=det Delta_g^{-1}=mathrm{exp}(zeta'(0)).
    $$

    Can this method be extended to general target manifolds?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let $(M,g)$ and $(N,h)$ be Riemannian manifolds. The action for the nonlinear sigma model with base $M$ and target $N$ is simply the Dirichlet energy (i.e. harmonic map energy) for maps $phi:Mto N$:
      $$
      S(phi)=int_M|dphi|^2;dV_g.
      $$

      Critical points of $S$ are harmonic maps. For example, when the target $(N,h)$ is just $mathbb{R}$ with the standard metric, then critical points of $S$ are harmonic functions, i.e. those maps $phi:Mto mathbb{R}$ satisfying $Delta_gphi=0$.



      The partition function for the nonlinear sigma model is formally given by the path integral
      $$
      Z=int e^{-S(phi)}; Dphi.
      $$



      Question: How can we rigorously define $Z$ for general target manifolds $(N,h)$?



      Note that there are cases when $Z$ is well defined:



      Special case: $(N,h)=(mathbb{R},g_{mathrm{std}})$ In this case, we can use zeta function regularization. The Minakshisundaram–Pleijel zeta function $zeta:mathbb{C}to mathbb{C}$ defined by
      $$
      zeta(s)=sum_{lambdainmathrm{Spec}(Delta_g)setminus {0}} |lambda|^{-s} qquadqquad text{for}qquad mathrm{Re}(s)>dim M/2
      $$
      is holomorphic for $mathrm{Re}(s)>dim M/2$ and analytically extends to a meromorphic function on all of $mathbb{C}$ which is regular at $s=0$. We then define the partition function by
      $$
      Z=det Delta_g^{-1}=mathrm{exp}(zeta'(0)).
      $$

      Can this method be extended to general target manifolds?










      share|cite|improve this question











      $endgroup$




      Let $(M,g)$ and $(N,h)$ be Riemannian manifolds. The action for the nonlinear sigma model with base $M$ and target $N$ is simply the Dirichlet energy (i.e. harmonic map energy) for maps $phi:Mto N$:
      $$
      S(phi)=int_M|dphi|^2;dV_g.
      $$

      Critical points of $S$ are harmonic maps. For example, when the target $(N,h)$ is just $mathbb{R}$ with the standard metric, then critical points of $S$ are harmonic functions, i.e. those maps $phi:Mto mathbb{R}$ satisfying $Delta_gphi=0$.



      The partition function for the nonlinear sigma model is formally given by the path integral
      $$
      Z=int e^{-S(phi)}; Dphi.
      $$



      Question: How can we rigorously define $Z$ for general target manifolds $(N,h)$?



      Note that there are cases when $Z$ is well defined:



      Special case: $(N,h)=(mathbb{R},g_{mathrm{std}})$ In this case, we can use zeta function regularization. The Minakshisundaram–Pleijel zeta function $zeta:mathbb{C}to mathbb{C}$ defined by
      $$
      zeta(s)=sum_{lambdainmathrm{Spec}(Delta_g)setminus {0}} |lambda|^{-s} qquadqquad text{for}qquad mathrm{Re}(s)>dim M/2
      $$
      is holomorphic for $mathrm{Re}(s)>dim M/2$ and analytically extends to a meromorphic function on all of $mathbb{C}$ which is regular at $s=0$. We then define the partition function by
      $$
      Z=det Delta_g^{-1}=mathrm{exp}(zeta'(0)).
      $$

      Can this method be extended to general target manifolds?







      functional-analysis differential-geometry mathematical-physics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 23 at 20:32







      rpf

















      asked Jan 23 at 0:14









      rpfrpf

      1,100513




      1,100513






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083913%2fpartition-function-for-nonlinear-sigma-model%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083913%2fpartition-function-for-nonlinear-sigma-model%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?