Partition function for nonlinear sigma model
$begingroup$
Let $(M,g)$ and $(N,h)$ be Riemannian manifolds. The action for the nonlinear sigma model with base $M$ and target $N$ is simply the Dirichlet energy (i.e. harmonic map energy) for maps $phi:Mto N$:
$$
S(phi)=int_M|dphi|^2;dV_g.
$$
Critical points of $S$ are harmonic maps. For example, when the target $(N,h)$ is just $mathbb{R}$ with the standard metric, then critical points of $S$ are harmonic functions, i.e. those maps $phi:Mto mathbb{R}$ satisfying $Delta_gphi=0$.
The partition function for the nonlinear sigma model is formally given by the path integral
$$
Z=int e^{-S(phi)}; Dphi.
$$
Question: How can we rigorously define $Z$ for general target manifolds $(N,h)$?
Note that there are cases when $Z$ is well defined:
Special case: $(N,h)=(mathbb{R},g_{mathrm{std}})$ In this case, we can use zeta function regularization. The Minakshisundaram–Pleijel zeta function $zeta:mathbb{C}to mathbb{C}$ defined by
$$
zeta(s)=sum_{lambdainmathrm{Spec}(Delta_g)setminus {0}} |lambda|^{-s} qquadqquad text{for}qquad mathrm{Re}(s)>dim M/2
$$ is holomorphic for $mathrm{Re}(s)>dim M/2$ and analytically extends to a meromorphic function on all of $mathbb{C}$ which is regular at $s=0$. We then define the partition function by
$$
Z=det Delta_g^{-1}=mathrm{exp}(zeta'(0)).
$$
Can this method be extended to general target manifolds?
functional-analysis differential-geometry mathematical-physics
$endgroup$
add a comment |
$begingroup$
Let $(M,g)$ and $(N,h)$ be Riemannian manifolds. The action for the nonlinear sigma model with base $M$ and target $N$ is simply the Dirichlet energy (i.e. harmonic map energy) for maps $phi:Mto N$:
$$
S(phi)=int_M|dphi|^2;dV_g.
$$
Critical points of $S$ are harmonic maps. For example, when the target $(N,h)$ is just $mathbb{R}$ with the standard metric, then critical points of $S$ are harmonic functions, i.e. those maps $phi:Mto mathbb{R}$ satisfying $Delta_gphi=0$.
The partition function for the nonlinear sigma model is formally given by the path integral
$$
Z=int e^{-S(phi)}; Dphi.
$$
Question: How can we rigorously define $Z$ for general target manifolds $(N,h)$?
Note that there are cases when $Z$ is well defined:
Special case: $(N,h)=(mathbb{R},g_{mathrm{std}})$ In this case, we can use zeta function regularization. The Minakshisundaram–Pleijel zeta function $zeta:mathbb{C}to mathbb{C}$ defined by
$$
zeta(s)=sum_{lambdainmathrm{Spec}(Delta_g)setminus {0}} |lambda|^{-s} qquadqquad text{for}qquad mathrm{Re}(s)>dim M/2
$$ is holomorphic for $mathrm{Re}(s)>dim M/2$ and analytically extends to a meromorphic function on all of $mathbb{C}$ which is regular at $s=0$. We then define the partition function by
$$
Z=det Delta_g^{-1}=mathrm{exp}(zeta'(0)).
$$
Can this method be extended to general target manifolds?
functional-analysis differential-geometry mathematical-physics
$endgroup$
add a comment |
$begingroup$
Let $(M,g)$ and $(N,h)$ be Riemannian manifolds. The action for the nonlinear sigma model with base $M$ and target $N$ is simply the Dirichlet energy (i.e. harmonic map energy) for maps $phi:Mto N$:
$$
S(phi)=int_M|dphi|^2;dV_g.
$$
Critical points of $S$ are harmonic maps. For example, when the target $(N,h)$ is just $mathbb{R}$ with the standard metric, then critical points of $S$ are harmonic functions, i.e. those maps $phi:Mto mathbb{R}$ satisfying $Delta_gphi=0$.
The partition function for the nonlinear sigma model is formally given by the path integral
$$
Z=int e^{-S(phi)}; Dphi.
$$
Question: How can we rigorously define $Z$ for general target manifolds $(N,h)$?
Note that there are cases when $Z$ is well defined:
Special case: $(N,h)=(mathbb{R},g_{mathrm{std}})$ In this case, we can use zeta function regularization. The Minakshisundaram–Pleijel zeta function $zeta:mathbb{C}to mathbb{C}$ defined by
$$
zeta(s)=sum_{lambdainmathrm{Spec}(Delta_g)setminus {0}} |lambda|^{-s} qquadqquad text{for}qquad mathrm{Re}(s)>dim M/2
$$ is holomorphic for $mathrm{Re}(s)>dim M/2$ and analytically extends to a meromorphic function on all of $mathbb{C}$ which is regular at $s=0$. We then define the partition function by
$$
Z=det Delta_g^{-1}=mathrm{exp}(zeta'(0)).
$$
Can this method be extended to general target manifolds?
functional-analysis differential-geometry mathematical-physics
$endgroup$
Let $(M,g)$ and $(N,h)$ be Riemannian manifolds. The action for the nonlinear sigma model with base $M$ and target $N$ is simply the Dirichlet energy (i.e. harmonic map energy) for maps $phi:Mto N$:
$$
S(phi)=int_M|dphi|^2;dV_g.
$$
Critical points of $S$ are harmonic maps. For example, when the target $(N,h)$ is just $mathbb{R}$ with the standard metric, then critical points of $S$ are harmonic functions, i.e. those maps $phi:Mto mathbb{R}$ satisfying $Delta_gphi=0$.
The partition function for the nonlinear sigma model is formally given by the path integral
$$
Z=int e^{-S(phi)}; Dphi.
$$
Question: How can we rigorously define $Z$ for general target manifolds $(N,h)$?
Note that there are cases when $Z$ is well defined:
Special case: $(N,h)=(mathbb{R},g_{mathrm{std}})$ In this case, we can use zeta function regularization. The Minakshisundaram–Pleijel zeta function $zeta:mathbb{C}to mathbb{C}$ defined by
$$
zeta(s)=sum_{lambdainmathrm{Spec}(Delta_g)setminus {0}} |lambda|^{-s} qquadqquad text{for}qquad mathrm{Re}(s)>dim M/2
$$ is holomorphic for $mathrm{Re}(s)>dim M/2$ and analytically extends to a meromorphic function on all of $mathbb{C}$ which is regular at $s=0$. We then define the partition function by
$$
Z=det Delta_g^{-1}=mathrm{exp}(zeta'(0)).
$$
Can this method be extended to general target manifolds?
functional-analysis differential-geometry mathematical-physics
functional-analysis differential-geometry mathematical-physics
edited Jan 23 at 20:32
rpf
asked Jan 23 at 0:14
rpfrpf
1,100513
1,100513
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083913%2fpartition-function-for-nonlinear-sigma-model%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083913%2fpartition-function-for-nonlinear-sigma-model%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown