Find $lambda$ such that $f$ it is differentiable in zero and has a continuous derivative in zero












2












$begingroup$


I am trying to solve this task




Find $lambda>0$ such that $f=begin{cases}0& x=0\ |x|^{lambda}cdot sinfrac{1}{x} & xneq 0 end{cases}$



a) is differentiable in zero



b) has a continuous derivative in zero.




My try



a)
$$lim_{h rightarrow 0^+}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$



$$lim_{h rightarrow 0^-}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
But there I have some doubts. It seems like $lambda$ does not matter there....


Moreover, can somebody give me hints to b)?
I think that I have do the same thing but this is unbelievable










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you think the first limit exists if $lambda = 1/2?$
    $endgroup$
    – zhw.
    Jan 23 at 0:09






  • 1




    $begingroup$
    No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
    $endgroup$
    – VirtualUser
    Jan 23 at 0:29










  • $begingroup$
    and in the second case we have the same situation?
    $endgroup$
    – VirtualUser
    Jan 23 at 0:29
















2












$begingroup$


I am trying to solve this task




Find $lambda>0$ such that $f=begin{cases}0& x=0\ |x|^{lambda}cdot sinfrac{1}{x} & xneq 0 end{cases}$



a) is differentiable in zero



b) has a continuous derivative in zero.




My try



a)
$$lim_{h rightarrow 0^+}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$



$$lim_{h rightarrow 0^-}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
But there I have some doubts. It seems like $lambda$ does not matter there....


Moreover, can somebody give me hints to b)?
I think that I have do the same thing but this is unbelievable










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you think the first limit exists if $lambda = 1/2?$
    $endgroup$
    – zhw.
    Jan 23 at 0:09






  • 1




    $begingroup$
    No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
    $endgroup$
    – VirtualUser
    Jan 23 at 0:29










  • $begingroup$
    and in the second case we have the same situation?
    $endgroup$
    – VirtualUser
    Jan 23 at 0:29














2












2








2





$begingroup$


I am trying to solve this task




Find $lambda>0$ such that $f=begin{cases}0& x=0\ |x|^{lambda}cdot sinfrac{1}{x} & xneq 0 end{cases}$



a) is differentiable in zero



b) has a continuous derivative in zero.




My try



a)
$$lim_{h rightarrow 0^+}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$



$$lim_{h rightarrow 0^-}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
But there I have some doubts. It seems like $lambda$ does not matter there....


Moreover, can somebody give me hints to b)?
I think that I have do the same thing but this is unbelievable










share|cite|improve this question











$endgroup$




I am trying to solve this task




Find $lambda>0$ such that $f=begin{cases}0& x=0\ |x|^{lambda}cdot sinfrac{1}{x} & xneq 0 end{cases}$



a) is differentiable in zero



b) has a continuous derivative in zero.




My try



a)
$$lim_{h rightarrow 0^+}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$



$$lim_{h rightarrow 0^-}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
But there I have some doubts. It seems like $lambda$ does not matter there....


Moreover, can somebody give me hints to b)?
I think that I have do the same thing but this is unbelievable







real-analysis calculus limits derivatives continuity






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 23 at 1:45









Thomas Shelby

3,7192525




3,7192525










asked Jan 23 at 0:02









VirtualUserVirtualUser

899114




899114












  • $begingroup$
    Do you think the first limit exists if $lambda = 1/2?$
    $endgroup$
    – zhw.
    Jan 23 at 0:09






  • 1




    $begingroup$
    No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
    $endgroup$
    – VirtualUser
    Jan 23 at 0:29










  • $begingroup$
    and in the second case we have the same situation?
    $endgroup$
    – VirtualUser
    Jan 23 at 0:29


















  • $begingroup$
    Do you think the first limit exists if $lambda = 1/2?$
    $endgroup$
    – zhw.
    Jan 23 at 0:09






  • 1




    $begingroup$
    No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
    $endgroup$
    – VirtualUser
    Jan 23 at 0:29










  • $begingroup$
    and in the second case we have the same situation?
    $endgroup$
    – VirtualUser
    Jan 23 at 0:29
















$begingroup$
Do you think the first limit exists if $lambda = 1/2?$
$endgroup$
– zhw.
Jan 23 at 0:09




$begingroup$
Do you think the first limit exists if $lambda = 1/2?$
$endgroup$
– zhw.
Jan 23 at 0:09




1




1




$begingroup$
No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
$endgroup$
– VirtualUser
Jan 23 at 0:29




$begingroup$
No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
$endgroup$
– VirtualUser
Jan 23 at 0:29












$begingroup$
and in the second case we have the same situation?
$endgroup$
– VirtualUser
Jan 23 at 0:29




$begingroup$
and in the second case we have the same situation?
$endgroup$
– VirtualUser
Jan 23 at 0:29










1 Answer
1






active

oldest

votes


















1












$begingroup$

For the existence part, to make sure the limit $$ f'(0)=lim_{hto 0} frac{|h|^{lambda}}{h}sinfrac{1}{h} $$ exists, we have $ lambda>1 $. And the limit is $ 0 $.



For the continuous derivative part, we have to let the following limit equal to $ 0 $, i.e. :
$$ lim_{hto 0} f'(h)-f'(0)=lim_{hto 0} f'(h)-0=lim_{hto 0} f'(h)=0 .$$
Thus, $$ begin{align} lim_{hto 0+}f'(h)&= lim_{hto 0+}left[(lambda-1)h^{lambda-2}sinfrac{1}{h}-h^{lambda-3}cosfrac{1}{h}right]=0 end{align} $$
and
$$ begin{align} lim_{hto 0-}f'(h)&= -lim_{hto 0-}left[(-lambda+1)(-h)^{lambda-2}sinfrac{1}{h}-(-h)^{lambda-3}cosfrac{1}{h}right]=0 end{align} .$$
Therefore, $ lambda> 3 $.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    $ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
    $endgroup$
    – VirtualUser
    Jan 27 at 22:40










  • $begingroup$
    @VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
    $endgroup$
    – user549397
    Jan 28 at 0:35











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083899%2ffind-lambda-such-that-f-it-is-differentiable-in-zero-and-has-a-continuous-d%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

For the existence part, to make sure the limit $$ f'(0)=lim_{hto 0} frac{|h|^{lambda}}{h}sinfrac{1}{h} $$ exists, we have $ lambda>1 $. And the limit is $ 0 $.



For the continuous derivative part, we have to let the following limit equal to $ 0 $, i.e. :
$$ lim_{hto 0} f'(h)-f'(0)=lim_{hto 0} f'(h)-0=lim_{hto 0} f'(h)=0 .$$
Thus, $$ begin{align} lim_{hto 0+}f'(h)&= lim_{hto 0+}left[(lambda-1)h^{lambda-2}sinfrac{1}{h}-h^{lambda-3}cosfrac{1}{h}right]=0 end{align} $$
and
$$ begin{align} lim_{hto 0-}f'(h)&= -lim_{hto 0-}left[(-lambda+1)(-h)^{lambda-2}sinfrac{1}{h}-(-h)^{lambda-3}cosfrac{1}{h}right]=0 end{align} .$$
Therefore, $ lambda> 3 $.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    $ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
    $endgroup$
    – VirtualUser
    Jan 27 at 22:40










  • $begingroup$
    @VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
    $endgroup$
    – user549397
    Jan 28 at 0:35
















1












$begingroup$

For the existence part, to make sure the limit $$ f'(0)=lim_{hto 0} frac{|h|^{lambda}}{h}sinfrac{1}{h} $$ exists, we have $ lambda>1 $. And the limit is $ 0 $.



For the continuous derivative part, we have to let the following limit equal to $ 0 $, i.e. :
$$ lim_{hto 0} f'(h)-f'(0)=lim_{hto 0} f'(h)-0=lim_{hto 0} f'(h)=0 .$$
Thus, $$ begin{align} lim_{hto 0+}f'(h)&= lim_{hto 0+}left[(lambda-1)h^{lambda-2}sinfrac{1}{h}-h^{lambda-3}cosfrac{1}{h}right]=0 end{align} $$
and
$$ begin{align} lim_{hto 0-}f'(h)&= -lim_{hto 0-}left[(-lambda+1)(-h)^{lambda-2}sinfrac{1}{h}-(-h)^{lambda-3}cosfrac{1}{h}right]=0 end{align} .$$
Therefore, $ lambda> 3 $.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    $ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
    $endgroup$
    – VirtualUser
    Jan 27 at 22:40










  • $begingroup$
    @VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
    $endgroup$
    – user549397
    Jan 28 at 0:35














1












1








1





$begingroup$

For the existence part, to make sure the limit $$ f'(0)=lim_{hto 0} frac{|h|^{lambda}}{h}sinfrac{1}{h} $$ exists, we have $ lambda>1 $. And the limit is $ 0 $.



For the continuous derivative part, we have to let the following limit equal to $ 0 $, i.e. :
$$ lim_{hto 0} f'(h)-f'(0)=lim_{hto 0} f'(h)-0=lim_{hto 0} f'(h)=0 .$$
Thus, $$ begin{align} lim_{hto 0+}f'(h)&= lim_{hto 0+}left[(lambda-1)h^{lambda-2}sinfrac{1}{h}-h^{lambda-3}cosfrac{1}{h}right]=0 end{align} $$
and
$$ begin{align} lim_{hto 0-}f'(h)&= -lim_{hto 0-}left[(-lambda+1)(-h)^{lambda-2}sinfrac{1}{h}-(-h)^{lambda-3}cosfrac{1}{h}right]=0 end{align} .$$
Therefore, $ lambda> 3 $.






share|cite|improve this answer









$endgroup$



For the existence part, to make sure the limit $$ f'(0)=lim_{hto 0} frac{|h|^{lambda}}{h}sinfrac{1}{h} $$ exists, we have $ lambda>1 $. And the limit is $ 0 $.



For the continuous derivative part, we have to let the following limit equal to $ 0 $, i.e. :
$$ lim_{hto 0} f'(h)-f'(0)=lim_{hto 0} f'(h)-0=lim_{hto 0} f'(h)=0 .$$
Thus, $$ begin{align} lim_{hto 0+}f'(h)&= lim_{hto 0+}left[(lambda-1)h^{lambda-2}sinfrac{1}{h}-h^{lambda-3}cosfrac{1}{h}right]=0 end{align} $$
and
$$ begin{align} lim_{hto 0-}f'(h)&= -lim_{hto 0-}left[(-lambda+1)(-h)^{lambda-2}sinfrac{1}{h}-(-h)^{lambda-3}cosfrac{1}{h}right]=0 end{align} .$$
Therefore, $ lambda> 3 $.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 23 at 1:36









user549397user549397

1,5081418




1,5081418












  • $begingroup$
    $ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
    $endgroup$
    – VirtualUser
    Jan 27 at 22:40










  • $begingroup$
    @VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
    $endgroup$
    – user549397
    Jan 28 at 0:35


















  • $begingroup$
    $ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
    $endgroup$
    – VirtualUser
    Jan 27 at 22:40










  • $begingroup$
    @VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
    $endgroup$
    – user549397
    Jan 28 at 0:35
















$begingroup$
$ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
$endgroup$
– VirtualUser
Jan 27 at 22:40




$begingroup$
$ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
$endgroup$
– VirtualUser
Jan 27 at 22:40












$begingroup$
@VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
$endgroup$
– user549397
Jan 28 at 0:35




$begingroup$
@VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
$endgroup$
– user549397
Jan 28 at 0:35


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083899%2ffind-lambda-such-that-f-it-is-differentiable-in-zero-and-has-a-continuous-d%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Mario Kart Wii

What does “Dominus providebit” mean?

Antonio Litta Visconti Arese