Find $lambda$ such that $f$ it is differentiable in zero and has a continuous derivative in zero
$begingroup$
I am trying to solve this task
Find $lambda>0$ such that $f=begin{cases}0& x=0\ |x|^{lambda}cdot sinfrac{1}{x} & xneq 0 end{cases}$
a) is differentiable in zero
b) has a continuous derivative in zero.
My try
a)
$$lim_{h rightarrow 0^+}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
$$lim_{h rightarrow 0^-}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
But there I have some doubts. It seems like $lambda$ does not matter there....
Moreover, can somebody give me hints to b)?
I think that I have do the same thing but this is unbelievable
real-analysis calculus limits derivatives continuity
$endgroup$
add a comment |
$begingroup$
I am trying to solve this task
Find $lambda>0$ such that $f=begin{cases}0& x=0\ |x|^{lambda}cdot sinfrac{1}{x} & xneq 0 end{cases}$
a) is differentiable in zero
b) has a continuous derivative in zero.
My try
a)
$$lim_{h rightarrow 0^+}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
$$lim_{h rightarrow 0^-}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
But there I have some doubts. It seems like $lambda$ does not matter there....
Moreover, can somebody give me hints to b)?
I think that I have do the same thing but this is unbelievable
real-analysis calculus limits derivatives continuity
$endgroup$
$begingroup$
Do you think the first limit exists if $lambda = 1/2?$
$endgroup$
– zhw.
Jan 23 at 0:09
1
$begingroup$
No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
$endgroup$
– VirtualUser
Jan 23 at 0:29
$begingroup$
and in the second case we have the same situation?
$endgroup$
– VirtualUser
Jan 23 at 0:29
add a comment |
$begingroup$
I am trying to solve this task
Find $lambda>0$ such that $f=begin{cases}0& x=0\ |x|^{lambda}cdot sinfrac{1}{x} & xneq 0 end{cases}$
a) is differentiable in zero
b) has a continuous derivative in zero.
My try
a)
$$lim_{h rightarrow 0^+}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
$$lim_{h rightarrow 0^-}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
But there I have some doubts. It seems like $lambda$ does not matter there....
Moreover, can somebody give me hints to b)?
I think that I have do the same thing but this is unbelievable
real-analysis calculus limits derivatives continuity
$endgroup$
I am trying to solve this task
Find $lambda>0$ such that $f=begin{cases}0& x=0\ |x|^{lambda}cdot sinfrac{1}{x} & xneq 0 end{cases}$
a) is differentiable in zero
b) has a continuous derivative in zero.
My try
a)
$$lim_{h rightarrow 0^+}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
$$lim_{h rightarrow 0^-}frac{f(h)-f(0)}{h} = lim_{h rightarrow 0^+}frac{|h|^{lambda}}{h} cdot sinfrac{1}{h} = 0$$
But there I have some doubts. It seems like $lambda$ does not matter there....
Moreover, can somebody give me hints to b)?
I think that I have do the same thing but this is unbelievable
real-analysis calculus limits derivatives continuity
real-analysis calculus limits derivatives continuity
edited Jan 23 at 1:45
Thomas Shelby
3,7192525
3,7192525
asked Jan 23 at 0:02
VirtualUserVirtualUser
899114
899114
$begingroup$
Do you think the first limit exists if $lambda = 1/2?$
$endgroup$
– zhw.
Jan 23 at 0:09
1
$begingroup$
No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
$endgroup$
– VirtualUser
Jan 23 at 0:29
$begingroup$
and in the second case we have the same situation?
$endgroup$
– VirtualUser
Jan 23 at 0:29
add a comment |
$begingroup$
Do you think the first limit exists if $lambda = 1/2?$
$endgroup$
– zhw.
Jan 23 at 0:09
1
$begingroup$
No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
$endgroup$
– VirtualUser
Jan 23 at 0:29
$begingroup$
and in the second case we have the same situation?
$endgroup$
– VirtualUser
Jan 23 at 0:29
$begingroup$
Do you think the first limit exists if $lambda = 1/2?$
$endgroup$
– zhw.
Jan 23 at 0:09
$begingroup$
Do you think the first limit exists if $lambda = 1/2?$
$endgroup$
– zhw.
Jan 23 at 0:09
1
1
$begingroup$
No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
$endgroup$
– VirtualUser
Jan 23 at 0:29
$begingroup$
No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
$endgroup$
– VirtualUser
Jan 23 at 0:29
$begingroup$
and in the second case we have the same situation?
$endgroup$
– VirtualUser
Jan 23 at 0:29
$begingroup$
and in the second case we have the same situation?
$endgroup$
– VirtualUser
Jan 23 at 0:29
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For the existence part, to make sure the limit $$ f'(0)=lim_{hto 0} frac{|h|^{lambda}}{h}sinfrac{1}{h} $$ exists, we have $ lambda>1 $. And the limit is $ 0 $.
For the continuous derivative part, we have to let the following limit equal to $ 0 $, i.e. :
$$ lim_{hto 0} f'(h)-f'(0)=lim_{hto 0} f'(h)-0=lim_{hto 0} f'(h)=0 .$$
Thus, $$ begin{align} lim_{hto 0+}f'(h)&= lim_{hto 0+}left[(lambda-1)h^{lambda-2}sinfrac{1}{h}-h^{lambda-3}cosfrac{1}{h}right]=0 end{align} $$
and
$$ begin{align} lim_{hto 0-}f'(h)&= -lim_{hto 0-}left[(-lambda+1)(-h)^{lambda-2}sinfrac{1}{h}-(-h)^{lambda-3}cosfrac{1}{h}right]=0 end{align} .$$
Therefore, $ lambda> 3 $.
$endgroup$
$begingroup$
$ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
$endgroup$
– VirtualUser
Jan 27 at 22:40
$begingroup$
@VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
$endgroup$
– user549397
Jan 28 at 0:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083899%2ffind-lambda-such-that-f-it-is-differentiable-in-zero-and-has-a-continuous-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For the existence part, to make sure the limit $$ f'(0)=lim_{hto 0} frac{|h|^{lambda}}{h}sinfrac{1}{h} $$ exists, we have $ lambda>1 $. And the limit is $ 0 $.
For the continuous derivative part, we have to let the following limit equal to $ 0 $, i.e. :
$$ lim_{hto 0} f'(h)-f'(0)=lim_{hto 0} f'(h)-0=lim_{hto 0} f'(h)=0 .$$
Thus, $$ begin{align} lim_{hto 0+}f'(h)&= lim_{hto 0+}left[(lambda-1)h^{lambda-2}sinfrac{1}{h}-h^{lambda-3}cosfrac{1}{h}right]=0 end{align} $$
and
$$ begin{align} lim_{hto 0-}f'(h)&= -lim_{hto 0-}left[(-lambda+1)(-h)^{lambda-2}sinfrac{1}{h}-(-h)^{lambda-3}cosfrac{1}{h}right]=0 end{align} .$$
Therefore, $ lambda> 3 $.
$endgroup$
$begingroup$
$ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
$endgroup$
– VirtualUser
Jan 27 at 22:40
$begingroup$
@VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
$endgroup$
– user549397
Jan 28 at 0:35
add a comment |
$begingroup$
For the existence part, to make sure the limit $$ f'(0)=lim_{hto 0} frac{|h|^{lambda}}{h}sinfrac{1}{h} $$ exists, we have $ lambda>1 $. And the limit is $ 0 $.
For the continuous derivative part, we have to let the following limit equal to $ 0 $, i.e. :
$$ lim_{hto 0} f'(h)-f'(0)=lim_{hto 0} f'(h)-0=lim_{hto 0} f'(h)=0 .$$
Thus, $$ begin{align} lim_{hto 0+}f'(h)&= lim_{hto 0+}left[(lambda-1)h^{lambda-2}sinfrac{1}{h}-h^{lambda-3}cosfrac{1}{h}right]=0 end{align} $$
and
$$ begin{align} lim_{hto 0-}f'(h)&= -lim_{hto 0-}left[(-lambda+1)(-h)^{lambda-2}sinfrac{1}{h}-(-h)^{lambda-3}cosfrac{1}{h}right]=0 end{align} .$$
Therefore, $ lambda> 3 $.
$endgroup$
$begingroup$
$ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
$endgroup$
– VirtualUser
Jan 27 at 22:40
$begingroup$
@VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
$endgroup$
– user549397
Jan 28 at 0:35
add a comment |
$begingroup$
For the existence part, to make sure the limit $$ f'(0)=lim_{hto 0} frac{|h|^{lambda}}{h}sinfrac{1}{h} $$ exists, we have $ lambda>1 $. And the limit is $ 0 $.
For the continuous derivative part, we have to let the following limit equal to $ 0 $, i.e. :
$$ lim_{hto 0} f'(h)-f'(0)=lim_{hto 0} f'(h)-0=lim_{hto 0} f'(h)=0 .$$
Thus, $$ begin{align} lim_{hto 0+}f'(h)&= lim_{hto 0+}left[(lambda-1)h^{lambda-2}sinfrac{1}{h}-h^{lambda-3}cosfrac{1}{h}right]=0 end{align} $$
and
$$ begin{align} lim_{hto 0-}f'(h)&= -lim_{hto 0-}left[(-lambda+1)(-h)^{lambda-2}sinfrac{1}{h}-(-h)^{lambda-3}cosfrac{1}{h}right]=0 end{align} .$$
Therefore, $ lambda> 3 $.
$endgroup$
For the existence part, to make sure the limit $$ f'(0)=lim_{hto 0} frac{|h|^{lambda}}{h}sinfrac{1}{h} $$ exists, we have $ lambda>1 $. And the limit is $ 0 $.
For the continuous derivative part, we have to let the following limit equal to $ 0 $, i.e. :
$$ lim_{hto 0} f'(h)-f'(0)=lim_{hto 0} f'(h)-0=lim_{hto 0} f'(h)=0 .$$
Thus, $$ begin{align} lim_{hto 0+}f'(h)&= lim_{hto 0+}left[(lambda-1)h^{lambda-2}sinfrac{1}{h}-h^{lambda-3}cosfrac{1}{h}right]=0 end{align} $$
and
$$ begin{align} lim_{hto 0-}f'(h)&= -lim_{hto 0-}left[(-lambda+1)(-h)^{lambda-2}sinfrac{1}{h}-(-h)^{lambda-3}cosfrac{1}{h}right]=0 end{align} .$$
Therefore, $ lambda> 3 $.
answered Jan 23 at 1:36
user549397user549397
1,5081418
1,5081418
$begingroup$
$ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
$endgroup$
– VirtualUser
Jan 27 at 22:40
$begingroup$
@VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
$endgroup$
– user549397
Jan 28 at 0:35
add a comment |
$begingroup$
$ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
$endgroup$
– VirtualUser
Jan 27 at 22:40
$begingroup$
@VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
$endgroup$
– user549397
Jan 28 at 0:35
$begingroup$
$ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
$endgroup$
– VirtualUser
Jan 27 at 22:40
$begingroup$
$ lambda> 3 $ - are you sure about that part? I think that there should be $ lambda> 2 $
$endgroup$
– VirtualUser
Jan 27 at 22:40
$begingroup$
@VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
$endgroup$
– user549397
Jan 28 at 0:35
$begingroup$
@VirtualUser Yes, since $ cosfrac{1}{h} $ does not exist.
$endgroup$
– user549397
Jan 28 at 0:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083899%2ffind-lambda-such-that-f-it-is-differentiable-in-zero-and-has-a-continuous-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you think the first limit exists if $lambda = 1/2?$
$endgroup$
– zhw.
Jan 23 at 0:09
1
$begingroup$
No, it cannot exists - Does mean that $lambda - 1 > 0 $ ?
$endgroup$
– VirtualUser
Jan 23 at 0:29
$begingroup$
and in the second case we have the same situation?
$endgroup$
– VirtualUser
Jan 23 at 0:29