How to Find the integral $int_{S}−(xy^2)~dydz + (2x ^2 y)~dzdx − (zy^2)~dxdy$ where is the portion of the...
$begingroup$
Find the integral
$$
int_{S}−(xy^2)~dydz + (2x^2y)~dzdx − (zy^2)~dxdy
$$
where $S$ is the portion of the sphere $x^2 + y^2 + z^2 = 1$ above the plane $z=frac{1}{2}$. Choose the direction of the normal to be outside the sphere.
Can i get some help? I got that the flux is
$$
huge phi = huge 0.
$$
and I am not sure if thats right.
begin{split}
vec F &= (-xy^2,2x^2y,-zy^2)\
vec n_mathrm{sphere} &= (2x,2y,2z)\
vec{F}cdot{}vec{n} = 2y^2(x^2 - z^2) &=^{{~(z^2 = 1-x^2-y^2)}}~4x^2y +2y^3 -2y\
intint 4x^2y +2y^3 - 2ydydx &=
end{split}
$$int_{r=0}^{r=sqrt{frac{3}{4}}}int_{theta=0}^{theta=2pi}4r^4cos^2theta sintheta + 2r^4sin^3theta - 2r^2sintheta dtheta dr = boxed{0}\
$$
multivariable-calculus vector-analysis divergence
$endgroup$
add a comment |
$begingroup$
Find the integral
$$
int_{S}−(xy^2)~dydz + (2x^2y)~dzdx − (zy^2)~dxdy
$$
where $S$ is the portion of the sphere $x^2 + y^2 + z^2 = 1$ above the plane $z=frac{1}{2}$. Choose the direction of the normal to be outside the sphere.
Can i get some help? I got that the flux is
$$
huge phi = huge 0.
$$
and I am not sure if thats right.
begin{split}
vec F &= (-xy^2,2x^2y,-zy^2)\
vec n_mathrm{sphere} &= (2x,2y,2z)\
vec{F}cdot{}vec{n} = 2y^2(x^2 - z^2) &=^{{~(z^2 = 1-x^2-y^2)}}~4x^2y +2y^3 -2y\
intint 4x^2y +2y^3 - 2ydydx &=
end{split}
$$int_{r=0}^{r=sqrt{frac{3}{4}}}int_{theta=0}^{theta=2pi}4r^4cos^2theta sintheta + 2r^4sin^3theta - 2r^2sintheta dtheta dr = boxed{0}\
$$
multivariable-calculus vector-analysis divergence
$endgroup$
$begingroup$
Anyone ? I need help with the question
$endgroup$
– Mather
Jan 23 at 6:11
add a comment |
$begingroup$
Find the integral
$$
int_{S}−(xy^2)~dydz + (2x^2y)~dzdx − (zy^2)~dxdy
$$
where $S$ is the portion of the sphere $x^2 + y^2 + z^2 = 1$ above the plane $z=frac{1}{2}$. Choose the direction of the normal to be outside the sphere.
Can i get some help? I got that the flux is
$$
huge phi = huge 0.
$$
and I am not sure if thats right.
begin{split}
vec F &= (-xy^2,2x^2y,-zy^2)\
vec n_mathrm{sphere} &= (2x,2y,2z)\
vec{F}cdot{}vec{n} = 2y^2(x^2 - z^2) &=^{{~(z^2 = 1-x^2-y^2)}}~4x^2y +2y^3 -2y\
intint 4x^2y +2y^3 - 2ydydx &=
end{split}
$$int_{r=0}^{r=sqrt{frac{3}{4}}}int_{theta=0}^{theta=2pi}4r^4cos^2theta sintheta + 2r^4sin^3theta - 2r^2sintheta dtheta dr = boxed{0}\
$$
multivariable-calculus vector-analysis divergence
$endgroup$
Find the integral
$$
int_{S}−(xy^2)~dydz + (2x^2y)~dzdx − (zy^2)~dxdy
$$
where $S$ is the portion of the sphere $x^2 + y^2 + z^2 = 1$ above the plane $z=frac{1}{2}$. Choose the direction of the normal to be outside the sphere.
Can i get some help? I got that the flux is
$$
huge phi = huge 0.
$$
and I am not sure if thats right.
begin{split}
vec F &= (-xy^2,2x^2y,-zy^2)\
vec n_mathrm{sphere} &= (2x,2y,2z)\
vec{F}cdot{}vec{n} = 2y^2(x^2 - z^2) &=^{{~(z^2 = 1-x^2-y^2)}}~4x^2y +2y^3 -2y\
intint 4x^2y +2y^3 - 2ydydx &=
end{split}
$$int_{r=0}^{r=sqrt{frac{3}{4}}}int_{theta=0}^{theta=2pi}4r^4cos^2theta sintheta + 2r^4sin^3theta - 2r^2sintheta dtheta dr = boxed{0}\
$$
multivariable-calculus vector-analysis divergence
multivariable-calculus vector-analysis divergence
edited Jan 23 at 6:09
Mather
asked Jan 22 at 21:40
Mather Mather
3418
3418
$begingroup$
Anyone ? I need help with the question
$endgroup$
– Mather
Jan 23 at 6:11
add a comment |
$begingroup$
Anyone ? I need help with the question
$endgroup$
– Mather
Jan 23 at 6:11
$begingroup$
Anyone ? I need help with the question
$endgroup$
– Mather
Jan 23 at 6:11
$begingroup$
Anyone ? I need help with the question
$endgroup$
– Mather
Jan 23 at 6:11
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $$
Omega: frac{1}{2}le zle sqrt{1-x^2-y^2}
$$ be the region enclosed by $Sbigcup S_1$ where $S_1 :z=frac{1}{2}, x^2+y^2lefrac{3}{4}$. We obtain
$$
iiint_Omega 2(x^2-y^2) mathrm{d}xmathrm{d}ymathrm{d}z =iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S
$$ by divergence theorem. Note that
$$
iiint_Omega x^2 mathrm{d}xmathrm{d}ymathrm{d}z=iiint_Omega y^2 mathrm{d}xmathrm{d}ymathrm{d}z
$$ by the rotational symmetry, hence the left-hand side equals $0$. This gives
$$iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S=0.
$$ Since outward unit normal vector $vec{n}=(0,0,-1)^T$ on $S_1$, it follows
$$begin{eqnarray}
iint_{S}vec{F}cdot vec{n} mathrm{d}S&=&-iint_{S_1}vec{F}cdot vec{n} mathrm{d}S\&=&-frac{1}{2}iint_{x^2+y^2le frac{3}{4}} y^2 mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}iint_{x^2+y^2le frac{3}{4}} (x^2+y^2) mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}int_0^{2pi}int_{0}^{frac{sqrt{3}}{2}}r^3 mathrm{d}rmathrm{d}theta=-frac{9pi}{128}.
end{eqnarray}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083747%2fhow-to-find-the-integral-int-s%25e2%2588%2592xy2dydz-2x-2-ydzdx-%25e2%2588%2592-zy2dxdy-w%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $$
Omega: frac{1}{2}le zle sqrt{1-x^2-y^2}
$$ be the region enclosed by $Sbigcup S_1$ where $S_1 :z=frac{1}{2}, x^2+y^2lefrac{3}{4}$. We obtain
$$
iiint_Omega 2(x^2-y^2) mathrm{d}xmathrm{d}ymathrm{d}z =iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S
$$ by divergence theorem. Note that
$$
iiint_Omega x^2 mathrm{d}xmathrm{d}ymathrm{d}z=iiint_Omega y^2 mathrm{d}xmathrm{d}ymathrm{d}z
$$ by the rotational symmetry, hence the left-hand side equals $0$. This gives
$$iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S=0.
$$ Since outward unit normal vector $vec{n}=(0,0,-1)^T$ on $S_1$, it follows
$$begin{eqnarray}
iint_{S}vec{F}cdot vec{n} mathrm{d}S&=&-iint_{S_1}vec{F}cdot vec{n} mathrm{d}S\&=&-frac{1}{2}iint_{x^2+y^2le frac{3}{4}} y^2 mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}iint_{x^2+y^2le frac{3}{4}} (x^2+y^2) mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}int_0^{2pi}int_{0}^{frac{sqrt{3}}{2}}r^3 mathrm{d}rmathrm{d}theta=-frac{9pi}{128}.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
Let $$
Omega: frac{1}{2}le zle sqrt{1-x^2-y^2}
$$ be the region enclosed by $Sbigcup S_1$ where $S_1 :z=frac{1}{2}, x^2+y^2lefrac{3}{4}$. We obtain
$$
iiint_Omega 2(x^2-y^2) mathrm{d}xmathrm{d}ymathrm{d}z =iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S
$$ by divergence theorem. Note that
$$
iiint_Omega x^2 mathrm{d}xmathrm{d}ymathrm{d}z=iiint_Omega y^2 mathrm{d}xmathrm{d}ymathrm{d}z
$$ by the rotational symmetry, hence the left-hand side equals $0$. This gives
$$iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S=0.
$$ Since outward unit normal vector $vec{n}=(0,0,-1)^T$ on $S_1$, it follows
$$begin{eqnarray}
iint_{S}vec{F}cdot vec{n} mathrm{d}S&=&-iint_{S_1}vec{F}cdot vec{n} mathrm{d}S\&=&-frac{1}{2}iint_{x^2+y^2le frac{3}{4}} y^2 mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}iint_{x^2+y^2le frac{3}{4}} (x^2+y^2) mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}int_0^{2pi}int_{0}^{frac{sqrt{3}}{2}}r^3 mathrm{d}rmathrm{d}theta=-frac{9pi}{128}.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
Let $$
Omega: frac{1}{2}le zle sqrt{1-x^2-y^2}
$$ be the region enclosed by $Sbigcup S_1$ where $S_1 :z=frac{1}{2}, x^2+y^2lefrac{3}{4}$. We obtain
$$
iiint_Omega 2(x^2-y^2) mathrm{d}xmathrm{d}ymathrm{d}z =iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S
$$ by divergence theorem. Note that
$$
iiint_Omega x^2 mathrm{d}xmathrm{d}ymathrm{d}z=iiint_Omega y^2 mathrm{d}xmathrm{d}ymathrm{d}z
$$ by the rotational symmetry, hence the left-hand side equals $0$. This gives
$$iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S=0.
$$ Since outward unit normal vector $vec{n}=(0,0,-1)^T$ on $S_1$, it follows
$$begin{eqnarray}
iint_{S}vec{F}cdot vec{n} mathrm{d}S&=&-iint_{S_1}vec{F}cdot vec{n} mathrm{d}S\&=&-frac{1}{2}iint_{x^2+y^2le frac{3}{4}} y^2 mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}iint_{x^2+y^2le frac{3}{4}} (x^2+y^2) mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}int_0^{2pi}int_{0}^{frac{sqrt{3}}{2}}r^3 mathrm{d}rmathrm{d}theta=-frac{9pi}{128}.
end{eqnarray}$$
$endgroup$
Let $$
Omega: frac{1}{2}le zle sqrt{1-x^2-y^2}
$$ be the region enclosed by $Sbigcup S_1$ where $S_1 :z=frac{1}{2}, x^2+y^2lefrac{3}{4}$. We obtain
$$
iiint_Omega 2(x^2-y^2) mathrm{d}xmathrm{d}ymathrm{d}z =iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S
$$ by divergence theorem. Note that
$$
iiint_Omega x^2 mathrm{d}xmathrm{d}ymathrm{d}z=iiint_Omega y^2 mathrm{d}xmathrm{d}ymathrm{d}z
$$ by the rotational symmetry, hence the left-hand side equals $0$. This gives
$$iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S=0.
$$ Since outward unit normal vector $vec{n}=(0,0,-1)^T$ on $S_1$, it follows
$$begin{eqnarray}
iint_{S}vec{F}cdot vec{n} mathrm{d}S&=&-iint_{S_1}vec{F}cdot vec{n} mathrm{d}S\&=&-frac{1}{2}iint_{x^2+y^2le frac{3}{4}} y^2 mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}iint_{x^2+y^2le frac{3}{4}} (x^2+y^2) mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}int_0^{2pi}int_{0}^{frac{sqrt{3}}{2}}r^3 mathrm{d}rmathrm{d}theta=-frac{9pi}{128}.
end{eqnarray}$$
edited Jan 23 at 8:39
answered Jan 23 at 7:20
SongSong
16.2k1739
16.2k1739
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083747%2fhow-to-find-the-integral-int-s%25e2%2588%2592xy2dydz-2x-2-ydzdx-%25e2%2588%2592-zy2dxdy-w%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Anyone ? I need help with the question
$endgroup$
– Mather
Jan 23 at 6:11