How to Find the integral $int_{S}−(xy^2)~dydz + (2x ^2 y)~dzdx − (zy^2)~dxdy$ where is the portion of the...












2












$begingroup$



Find the integral
$$
int_{S}−(xy^2)~dydz + (2x^2y)~dzdx − (zy^2)~dxdy
$$

where $S$ is the portion of the sphere $x^2 + y^2 + z^2 = 1$ above the plane $z=frac{1}{2}$. Choose the direction of the normal to be outside the sphere.




Can i get some help? I got that the flux is
$$
huge phi = huge 0.
$$

and I am not sure if thats right.
begin{split}
vec F &= (-xy^2,2x^2y,-zy^2)\
vec n_mathrm{sphere} &= (2x,2y,2z)\
vec{F}cdot{}vec{n} = 2y^2(x^2 - z^2) &=^{{~(z^2 = 1-x^2-y^2)}}~4x^2y +2y^3 -2y\
intint 4x^2y +2y^3 - 2ydydx &=
end{split}



$$int_{r=0}^{r=sqrt{frac{3}{4}}}int_{theta=0}^{theta=2pi}4r^4cos^2theta sintheta + 2r^4sin^3theta - 2r^2sintheta dtheta dr = boxed{0}\
$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Anyone ? I need help with the question
    $endgroup$
    – Mather
    Jan 23 at 6:11
















2












$begingroup$



Find the integral
$$
int_{S}−(xy^2)~dydz + (2x^2y)~dzdx − (zy^2)~dxdy
$$

where $S$ is the portion of the sphere $x^2 + y^2 + z^2 = 1$ above the plane $z=frac{1}{2}$. Choose the direction of the normal to be outside the sphere.




Can i get some help? I got that the flux is
$$
huge phi = huge 0.
$$

and I am not sure if thats right.
begin{split}
vec F &= (-xy^2,2x^2y,-zy^2)\
vec n_mathrm{sphere} &= (2x,2y,2z)\
vec{F}cdot{}vec{n} = 2y^2(x^2 - z^2) &=^{{~(z^2 = 1-x^2-y^2)}}~4x^2y +2y^3 -2y\
intint 4x^2y +2y^3 - 2ydydx &=
end{split}



$$int_{r=0}^{r=sqrt{frac{3}{4}}}int_{theta=0}^{theta=2pi}4r^4cos^2theta sintheta + 2r^4sin^3theta - 2r^2sintheta dtheta dr = boxed{0}\
$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Anyone ? I need help with the question
    $endgroup$
    – Mather
    Jan 23 at 6:11














2












2








2


0



$begingroup$



Find the integral
$$
int_{S}−(xy^2)~dydz + (2x^2y)~dzdx − (zy^2)~dxdy
$$

where $S$ is the portion of the sphere $x^2 + y^2 + z^2 = 1$ above the plane $z=frac{1}{2}$. Choose the direction of the normal to be outside the sphere.




Can i get some help? I got that the flux is
$$
huge phi = huge 0.
$$

and I am not sure if thats right.
begin{split}
vec F &= (-xy^2,2x^2y,-zy^2)\
vec n_mathrm{sphere} &= (2x,2y,2z)\
vec{F}cdot{}vec{n} = 2y^2(x^2 - z^2) &=^{{~(z^2 = 1-x^2-y^2)}}~4x^2y +2y^3 -2y\
intint 4x^2y +2y^3 - 2ydydx &=
end{split}



$$int_{r=0}^{r=sqrt{frac{3}{4}}}int_{theta=0}^{theta=2pi}4r^4cos^2theta sintheta + 2r^4sin^3theta - 2r^2sintheta dtheta dr = boxed{0}\
$$










share|cite|improve this question











$endgroup$





Find the integral
$$
int_{S}−(xy^2)~dydz + (2x^2y)~dzdx − (zy^2)~dxdy
$$

where $S$ is the portion of the sphere $x^2 + y^2 + z^2 = 1$ above the plane $z=frac{1}{2}$. Choose the direction of the normal to be outside the sphere.




Can i get some help? I got that the flux is
$$
huge phi = huge 0.
$$

and I am not sure if thats right.
begin{split}
vec F &= (-xy^2,2x^2y,-zy^2)\
vec n_mathrm{sphere} &= (2x,2y,2z)\
vec{F}cdot{}vec{n} = 2y^2(x^2 - z^2) &=^{{~(z^2 = 1-x^2-y^2)}}~4x^2y +2y^3 -2y\
intint 4x^2y +2y^3 - 2ydydx &=
end{split}



$$int_{r=0}^{r=sqrt{frac{3}{4}}}int_{theta=0}^{theta=2pi}4r^4cos^2theta sintheta + 2r^4sin^3theta - 2r^2sintheta dtheta dr = boxed{0}\
$$







multivariable-calculus vector-analysis divergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 23 at 6:09







Mather

















asked Jan 22 at 21:40









Mather Mather

3418




3418












  • $begingroup$
    Anyone ? I need help with the question
    $endgroup$
    – Mather
    Jan 23 at 6:11


















  • $begingroup$
    Anyone ? I need help with the question
    $endgroup$
    – Mather
    Jan 23 at 6:11
















$begingroup$
Anyone ? I need help with the question
$endgroup$
– Mather
Jan 23 at 6:11




$begingroup$
Anyone ? I need help with the question
$endgroup$
– Mather
Jan 23 at 6:11










1 Answer
1






active

oldest

votes


















1












$begingroup$

Let $$
Omega: frac{1}{2}le zle sqrt{1-x^2-y^2}
$$
be the region enclosed by $Sbigcup S_1$ where $S_1 :z=frac{1}{2}, x^2+y^2lefrac{3}{4}$. We obtain
$$
iiint_Omega 2(x^2-y^2) mathrm{d}xmathrm{d}ymathrm{d}z =iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S
$$
by divergence theorem. Note that
$$
iiint_Omega x^2 mathrm{d}xmathrm{d}ymathrm{d}z=iiint_Omega y^2 mathrm{d}xmathrm{d}ymathrm{d}z
$$
by the rotational symmetry, hence the left-hand side equals $0$. This gives
$$iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S=0.
$$
Since outward unit normal vector $vec{n}=(0,0,-1)^T$ on $S_1$, it follows
$$begin{eqnarray}
iint_{S}vec{F}cdot vec{n} mathrm{d}S&=&-iint_{S_1}vec{F}cdot vec{n} mathrm{d}S\&=&-frac{1}{2}iint_{x^2+y^2le frac{3}{4}} y^2 mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}iint_{x^2+y^2le frac{3}{4}} (x^2+y^2) mathrm{d}xmathrm{d}y\
&=&-frac{1}{4}int_0^{2pi}int_{0}^{frac{sqrt{3}}{2}}r^3 mathrm{d}rmathrm{d}theta=-frac{9pi}{128}.
end{eqnarray}$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083747%2fhow-to-find-the-integral-int-s%25e2%2588%2592xy2dydz-2x-2-ydzdx-%25e2%2588%2592-zy2dxdy-w%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Let $$
    Omega: frac{1}{2}le zle sqrt{1-x^2-y^2}
    $$
    be the region enclosed by $Sbigcup S_1$ where $S_1 :z=frac{1}{2}, x^2+y^2lefrac{3}{4}$. We obtain
    $$
    iiint_Omega 2(x^2-y^2) mathrm{d}xmathrm{d}ymathrm{d}z =iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S
    $$
    by divergence theorem. Note that
    $$
    iiint_Omega x^2 mathrm{d}xmathrm{d}ymathrm{d}z=iiint_Omega y^2 mathrm{d}xmathrm{d}ymathrm{d}z
    $$
    by the rotational symmetry, hence the left-hand side equals $0$. This gives
    $$iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S=0.
    $$
    Since outward unit normal vector $vec{n}=(0,0,-1)^T$ on $S_1$, it follows
    $$begin{eqnarray}
    iint_{S}vec{F}cdot vec{n} mathrm{d}S&=&-iint_{S_1}vec{F}cdot vec{n} mathrm{d}S\&=&-frac{1}{2}iint_{x^2+y^2le frac{3}{4}} y^2 mathrm{d}xmathrm{d}y\
    &=&-frac{1}{4}iint_{x^2+y^2le frac{3}{4}} (x^2+y^2) mathrm{d}xmathrm{d}y\
    &=&-frac{1}{4}int_0^{2pi}int_{0}^{frac{sqrt{3}}{2}}r^3 mathrm{d}rmathrm{d}theta=-frac{9pi}{128}.
    end{eqnarray}$$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Let $$
      Omega: frac{1}{2}le zle sqrt{1-x^2-y^2}
      $$
      be the region enclosed by $Sbigcup S_1$ where $S_1 :z=frac{1}{2}, x^2+y^2lefrac{3}{4}$. We obtain
      $$
      iiint_Omega 2(x^2-y^2) mathrm{d}xmathrm{d}ymathrm{d}z =iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S
      $$
      by divergence theorem. Note that
      $$
      iiint_Omega x^2 mathrm{d}xmathrm{d}ymathrm{d}z=iiint_Omega y^2 mathrm{d}xmathrm{d}ymathrm{d}z
      $$
      by the rotational symmetry, hence the left-hand side equals $0$. This gives
      $$iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S=0.
      $$
      Since outward unit normal vector $vec{n}=(0,0,-1)^T$ on $S_1$, it follows
      $$begin{eqnarray}
      iint_{S}vec{F}cdot vec{n} mathrm{d}S&=&-iint_{S_1}vec{F}cdot vec{n} mathrm{d}S\&=&-frac{1}{2}iint_{x^2+y^2le frac{3}{4}} y^2 mathrm{d}xmathrm{d}y\
      &=&-frac{1}{4}iint_{x^2+y^2le frac{3}{4}} (x^2+y^2) mathrm{d}xmathrm{d}y\
      &=&-frac{1}{4}int_0^{2pi}int_{0}^{frac{sqrt{3}}{2}}r^3 mathrm{d}rmathrm{d}theta=-frac{9pi}{128}.
      end{eqnarray}$$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Let $$
        Omega: frac{1}{2}le zle sqrt{1-x^2-y^2}
        $$
        be the region enclosed by $Sbigcup S_1$ where $S_1 :z=frac{1}{2}, x^2+y^2lefrac{3}{4}$. We obtain
        $$
        iiint_Omega 2(x^2-y^2) mathrm{d}xmathrm{d}ymathrm{d}z =iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S
        $$
        by divergence theorem. Note that
        $$
        iiint_Omega x^2 mathrm{d}xmathrm{d}ymathrm{d}z=iiint_Omega y^2 mathrm{d}xmathrm{d}ymathrm{d}z
        $$
        by the rotational symmetry, hence the left-hand side equals $0$. This gives
        $$iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S=0.
        $$
        Since outward unit normal vector $vec{n}=(0,0,-1)^T$ on $S_1$, it follows
        $$begin{eqnarray}
        iint_{S}vec{F}cdot vec{n} mathrm{d}S&=&-iint_{S_1}vec{F}cdot vec{n} mathrm{d}S\&=&-frac{1}{2}iint_{x^2+y^2le frac{3}{4}} y^2 mathrm{d}xmathrm{d}y\
        &=&-frac{1}{4}iint_{x^2+y^2le frac{3}{4}} (x^2+y^2) mathrm{d}xmathrm{d}y\
        &=&-frac{1}{4}int_0^{2pi}int_{0}^{frac{sqrt{3}}{2}}r^3 mathrm{d}rmathrm{d}theta=-frac{9pi}{128}.
        end{eqnarray}$$






        share|cite|improve this answer











        $endgroup$



        Let $$
        Omega: frac{1}{2}le zle sqrt{1-x^2-y^2}
        $$
        be the region enclosed by $Sbigcup S_1$ where $S_1 :z=frac{1}{2}, x^2+y^2lefrac{3}{4}$. We obtain
        $$
        iiint_Omega 2(x^2-y^2) mathrm{d}xmathrm{d}ymathrm{d}z =iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S
        $$
        by divergence theorem. Note that
        $$
        iiint_Omega x^2 mathrm{d}xmathrm{d}ymathrm{d}z=iiint_Omega y^2 mathrm{d}xmathrm{d}ymathrm{d}z
        $$
        by the rotational symmetry, hence the left-hand side equals $0$. This gives
        $$iint_{Sbigcup S_1}vec{F}cdot vec{n} mathrm{d}S=0.
        $$
        Since outward unit normal vector $vec{n}=(0,0,-1)^T$ on $S_1$, it follows
        $$begin{eqnarray}
        iint_{S}vec{F}cdot vec{n} mathrm{d}S&=&-iint_{S_1}vec{F}cdot vec{n} mathrm{d}S\&=&-frac{1}{2}iint_{x^2+y^2le frac{3}{4}} y^2 mathrm{d}xmathrm{d}y\
        &=&-frac{1}{4}iint_{x^2+y^2le frac{3}{4}} (x^2+y^2) mathrm{d}xmathrm{d}y\
        &=&-frac{1}{4}int_0^{2pi}int_{0}^{frac{sqrt{3}}{2}}r^3 mathrm{d}rmathrm{d}theta=-frac{9pi}{128}.
        end{eqnarray}$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 23 at 8:39

























        answered Jan 23 at 7:20









        SongSong

        16.2k1739




        16.2k1739






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083747%2fhow-to-find-the-integral-int-s%25e2%2588%2592xy2dydz-2x-2-ydzdx-%25e2%2588%2592-zy2dxdy-w%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?