What is Fourier transform of $|(x,t)|^{-alpha}$?
$begingroup$
Let the $xin mathbb{R}^d, tin mathbb{R}$, i.e. $(x,t)in {mathbb{R^{d+1}}}$.
I already know the Fourier transform of $|x|^{-alpha}$ is $|xi|^{-d+alpha}$.
How do I get the Fourier transform of $|(x,t)|^{-alpha} = left(sqrt{|x|^2 +t^2}right)^{-alpha}$ with respect to $x$ ?
fourier-analysis harmonic-analysis
$endgroup$
add a comment |
$begingroup$
Let the $xin mathbb{R}^d, tin mathbb{R}$, i.e. $(x,t)in {mathbb{R^{d+1}}}$.
I already know the Fourier transform of $|x|^{-alpha}$ is $|xi|^{-d+alpha}$.
How do I get the Fourier transform of $|(x,t)|^{-alpha} = left(sqrt{|x|^2 +t^2}right)^{-alpha}$ with respect to $x$ ?
fourier-analysis harmonic-analysis
$endgroup$
$begingroup$
@reuns Isn't there the more general form of that?
$endgroup$
– Idkwhat
Jan 15 at 9:24
$begingroup$
I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
$endgroup$
– reuns
Jan 15 at 10:46
add a comment |
$begingroup$
Let the $xin mathbb{R}^d, tin mathbb{R}$, i.e. $(x,t)in {mathbb{R^{d+1}}}$.
I already know the Fourier transform of $|x|^{-alpha}$ is $|xi|^{-d+alpha}$.
How do I get the Fourier transform of $|(x,t)|^{-alpha} = left(sqrt{|x|^2 +t^2}right)^{-alpha}$ with respect to $x$ ?
fourier-analysis harmonic-analysis
$endgroup$
Let the $xin mathbb{R}^d, tin mathbb{R}$, i.e. $(x,t)in {mathbb{R^{d+1}}}$.
I already know the Fourier transform of $|x|^{-alpha}$ is $|xi|^{-d+alpha}$.
How do I get the Fourier transform of $|(x,t)|^{-alpha} = left(sqrt{|x|^2 +t^2}right)^{-alpha}$ with respect to $x$ ?
fourier-analysis harmonic-analysis
fourier-analysis harmonic-analysis
edited Jan 15 at 9:16
Idkwhat
asked Jan 15 at 8:55
IdkwhatIdkwhat
236
236
$begingroup$
@reuns Isn't there the more general form of that?
$endgroup$
– Idkwhat
Jan 15 at 9:24
$begingroup$
I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
$endgroup$
– reuns
Jan 15 at 10:46
add a comment |
$begingroup$
@reuns Isn't there the more general form of that?
$endgroup$
– Idkwhat
Jan 15 at 9:24
$begingroup$
I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
$endgroup$
– reuns
Jan 15 at 10:46
$begingroup$
@reuns Isn't there the more general form of that?
$endgroup$
– Idkwhat
Jan 15 at 9:24
$begingroup$
@reuns Isn't there the more general form of that?
$endgroup$
– Idkwhat
Jan 15 at 9:24
$begingroup$
I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
$endgroup$
– reuns
Jan 15 at 10:46
$begingroup$
I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
$endgroup$
– reuns
Jan 15 at 10:46
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You are interested in obtaining an explicit expression for
$$I(k,t) =frac{1}{(2pi)^{n/2}} intleft(sqrt{|x|^2 +t^2}right)^{-alpha} e^{i xcdot k} d^n x,.$$
Let us introduce spherical coordinates with the first coordinate of $x$ with component $r cos phi$ pointing along $k$. We thus reduce the integral to the form
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty int_{0}^pi r^{n-1}left(sqrt{r^2 +t^2}right)^{-alpha} e^{i r |k| cos(phi)} dphi dr $$
where $S_n$ is the surface area of the $n$-sphere given by
$$ S_{n-1} =frac{npi^frac{n}{2}}{Gammaleft(frac{n}{2}+1 right)}.$$
The integral over $phi$ can be easily executed with the result
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty frac{pi r^{n-1} J_0(r |k|)}{(r^2+t^2)^{alpha/2}} dr,. $$
I am not sure about the remaining integral. Maybe somebody has an idea...
$endgroup$
$begingroup$
It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
$endgroup$
– reuns
Jan 15 at 11:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074216%2fwhat-is-fourier-transform-of-x-t-alpha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You are interested in obtaining an explicit expression for
$$I(k,t) =frac{1}{(2pi)^{n/2}} intleft(sqrt{|x|^2 +t^2}right)^{-alpha} e^{i xcdot k} d^n x,.$$
Let us introduce spherical coordinates with the first coordinate of $x$ with component $r cos phi$ pointing along $k$. We thus reduce the integral to the form
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty int_{0}^pi r^{n-1}left(sqrt{r^2 +t^2}right)^{-alpha} e^{i r |k| cos(phi)} dphi dr $$
where $S_n$ is the surface area of the $n$-sphere given by
$$ S_{n-1} =frac{npi^frac{n}{2}}{Gammaleft(frac{n}{2}+1 right)}.$$
The integral over $phi$ can be easily executed with the result
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty frac{pi r^{n-1} J_0(r |k|)}{(r^2+t^2)^{alpha/2}} dr,. $$
I am not sure about the remaining integral. Maybe somebody has an idea...
$endgroup$
$begingroup$
It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
$endgroup$
– reuns
Jan 15 at 11:02
add a comment |
$begingroup$
You are interested in obtaining an explicit expression for
$$I(k,t) =frac{1}{(2pi)^{n/2}} intleft(sqrt{|x|^2 +t^2}right)^{-alpha} e^{i xcdot k} d^n x,.$$
Let us introduce spherical coordinates with the first coordinate of $x$ with component $r cos phi$ pointing along $k$. We thus reduce the integral to the form
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty int_{0}^pi r^{n-1}left(sqrt{r^2 +t^2}right)^{-alpha} e^{i r |k| cos(phi)} dphi dr $$
where $S_n$ is the surface area of the $n$-sphere given by
$$ S_{n-1} =frac{npi^frac{n}{2}}{Gammaleft(frac{n}{2}+1 right)}.$$
The integral over $phi$ can be easily executed with the result
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty frac{pi r^{n-1} J_0(r |k|)}{(r^2+t^2)^{alpha/2}} dr,. $$
I am not sure about the remaining integral. Maybe somebody has an idea...
$endgroup$
$begingroup$
It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
$endgroup$
– reuns
Jan 15 at 11:02
add a comment |
$begingroup$
You are interested in obtaining an explicit expression for
$$I(k,t) =frac{1}{(2pi)^{n/2}} intleft(sqrt{|x|^2 +t^2}right)^{-alpha} e^{i xcdot k} d^n x,.$$
Let us introduce spherical coordinates with the first coordinate of $x$ with component $r cos phi$ pointing along $k$. We thus reduce the integral to the form
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty int_{0}^pi r^{n-1}left(sqrt{r^2 +t^2}right)^{-alpha} e^{i r |k| cos(phi)} dphi dr $$
where $S_n$ is the surface area of the $n$-sphere given by
$$ S_{n-1} =frac{npi^frac{n}{2}}{Gammaleft(frac{n}{2}+1 right)}.$$
The integral over $phi$ can be easily executed with the result
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty frac{pi r^{n-1} J_0(r |k|)}{(r^2+t^2)^{alpha/2}} dr,. $$
I am not sure about the remaining integral. Maybe somebody has an idea...
$endgroup$
You are interested in obtaining an explicit expression for
$$I(k,t) =frac{1}{(2pi)^{n/2}} intleft(sqrt{|x|^2 +t^2}right)^{-alpha} e^{i xcdot k} d^n x,.$$
Let us introduce spherical coordinates with the first coordinate of $x$ with component $r cos phi$ pointing along $k$. We thus reduce the integral to the form
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty int_{0}^pi r^{n-1}left(sqrt{r^2 +t^2}right)^{-alpha} e^{i r |k| cos(phi)} dphi dr $$
where $S_n$ is the surface area of the $n$-sphere given by
$$ S_{n-1} =frac{npi^frac{n}{2}}{Gammaleft(frac{n}{2}+1 right)}.$$
The integral over $phi$ can be easily executed with the result
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty frac{pi r^{n-1} J_0(r |k|)}{(r^2+t^2)^{alpha/2}} dr,. $$
I am not sure about the remaining integral. Maybe somebody has an idea...
answered Jan 15 at 9:51
FabianFabian
19.7k3674
19.7k3674
$begingroup$
It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
$endgroup$
– reuns
Jan 15 at 11:02
add a comment |
$begingroup$
It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
$endgroup$
– reuns
Jan 15 at 11:02
$begingroup$
It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
$endgroup$
– reuns
Jan 15 at 11:02
$begingroup$
It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
$endgroup$
– reuns
Jan 15 at 11:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074216%2fwhat-is-fourier-transform-of-x-t-alpha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@reuns Isn't there the more general form of that?
$endgroup$
– Idkwhat
Jan 15 at 9:24
$begingroup$
I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
$endgroup$
– reuns
Jan 15 at 10:46