What is Fourier transform of $|(x,t)|^{-alpha}$?












1












$begingroup$


Let the $xin mathbb{R}^d, tin mathbb{R}$, i.e. $(x,t)in {mathbb{R^{d+1}}}$.



I already know the Fourier transform of $|x|^{-alpha}$ is $|xi|^{-d+alpha}$.



How do I get the Fourier transform of $|(x,t)|^{-alpha} = left(sqrt{|x|^2 +t^2}right)^{-alpha}$ with respect to $x$ ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    @reuns Isn't there the more general form of that?
    $endgroup$
    – Idkwhat
    Jan 15 at 9:24










  • $begingroup$
    I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
    $endgroup$
    – reuns
    Jan 15 at 10:46
















1












$begingroup$


Let the $xin mathbb{R}^d, tin mathbb{R}$, i.e. $(x,t)in {mathbb{R^{d+1}}}$.



I already know the Fourier transform of $|x|^{-alpha}$ is $|xi|^{-d+alpha}$.



How do I get the Fourier transform of $|(x,t)|^{-alpha} = left(sqrt{|x|^2 +t^2}right)^{-alpha}$ with respect to $x$ ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    @reuns Isn't there the more general form of that?
    $endgroup$
    – Idkwhat
    Jan 15 at 9:24










  • $begingroup$
    I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
    $endgroup$
    – reuns
    Jan 15 at 10:46














1












1








1





$begingroup$


Let the $xin mathbb{R}^d, tin mathbb{R}$, i.e. $(x,t)in {mathbb{R^{d+1}}}$.



I already know the Fourier transform of $|x|^{-alpha}$ is $|xi|^{-d+alpha}$.



How do I get the Fourier transform of $|(x,t)|^{-alpha} = left(sqrt{|x|^2 +t^2}right)^{-alpha}$ with respect to $x$ ?










share|cite|improve this question











$endgroup$




Let the $xin mathbb{R}^d, tin mathbb{R}$, i.e. $(x,t)in {mathbb{R^{d+1}}}$.



I already know the Fourier transform of $|x|^{-alpha}$ is $|xi|^{-d+alpha}$.



How do I get the Fourier transform of $|(x,t)|^{-alpha} = left(sqrt{|x|^2 +t^2}right)^{-alpha}$ with respect to $x$ ?







fourier-analysis harmonic-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 9:16







Idkwhat

















asked Jan 15 at 8:55









IdkwhatIdkwhat

236




236












  • $begingroup$
    @reuns Isn't there the more general form of that?
    $endgroup$
    – Idkwhat
    Jan 15 at 9:24










  • $begingroup$
    I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
    $endgroup$
    – reuns
    Jan 15 at 10:46


















  • $begingroup$
    @reuns Isn't there the more general form of that?
    $endgroup$
    – Idkwhat
    Jan 15 at 9:24










  • $begingroup$
    I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
    $endgroup$
    – reuns
    Jan 15 at 10:46
















$begingroup$
@reuns Isn't there the more general form of that?
$endgroup$
– Idkwhat
Jan 15 at 9:24




$begingroup$
@reuns Isn't there the more general form of that?
$endgroup$
– Idkwhat
Jan 15 at 9:24












$begingroup$
I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
$endgroup$
– reuns
Jan 15 at 10:46




$begingroup$
I meant the inverse Fourier transform of $|(y,u)|^{alpha-d-1}$ in $u in mathbb{R}$ (and $y in mathbb{R}^d$ fixed).
$endgroup$
– reuns
Jan 15 at 10:46










1 Answer
1






active

oldest

votes


















1












$begingroup$

You are interested in obtaining an explicit expression for
$$I(k,t) =frac{1}{(2pi)^{n/2}} intleft(sqrt{|x|^2 +t^2}right)^{-alpha} e^{i xcdot k} d^n x,.$$
Let us introduce spherical coordinates with the first coordinate of $x$ with component $r cos phi$ pointing along $k$. We thus reduce the integral to the form
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty int_{0}^pi r^{n-1}left(sqrt{r^2 +t^2}right)^{-alpha} e^{i r |k| cos(phi)} dphi dr $$
where $S_n$ is the surface area of the $n$-sphere given by
$$ S_{n-1} =frac{npi^frac{n}{2}}{Gammaleft(frac{n}{2}+1 right)}.$$



The integral over $phi$ can be easily executed with the result
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty frac{pi r^{n-1} J_0(r |k|)}{(r^2+t^2)^{alpha/2}} dr,. $$
I am not sure about the remaining integral. Maybe somebody has an idea...






share|cite|improve this answer









$endgroup$













  • $begingroup$
    It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
    $endgroup$
    – reuns
    Jan 15 at 11:02













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074216%2fwhat-is-fourier-transform-of-x-t-alpha%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

You are interested in obtaining an explicit expression for
$$I(k,t) =frac{1}{(2pi)^{n/2}} intleft(sqrt{|x|^2 +t^2}right)^{-alpha} e^{i xcdot k} d^n x,.$$
Let us introduce spherical coordinates with the first coordinate of $x$ with component $r cos phi$ pointing along $k$. We thus reduce the integral to the form
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty int_{0}^pi r^{n-1}left(sqrt{r^2 +t^2}right)^{-alpha} e^{i r |k| cos(phi)} dphi dr $$
where $S_n$ is the surface area of the $n$-sphere given by
$$ S_{n-1} =frac{npi^frac{n}{2}}{Gammaleft(frac{n}{2}+1 right)}.$$



The integral over $phi$ can be easily executed with the result
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty frac{pi r^{n-1} J_0(r |k|)}{(r^2+t^2)^{alpha/2}} dr,. $$
I am not sure about the remaining integral. Maybe somebody has an idea...






share|cite|improve this answer









$endgroup$













  • $begingroup$
    It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
    $endgroup$
    – reuns
    Jan 15 at 11:02


















1












$begingroup$

You are interested in obtaining an explicit expression for
$$I(k,t) =frac{1}{(2pi)^{n/2}} intleft(sqrt{|x|^2 +t^2}right)^{-alpha} e^{i xcdot k} d^n x,.$$
Let us introduce spherical coordinates with the first coordinate of $x$ with component $r cos phi$ pointing along $k$. We thus reduce the integral to the form
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty int_{0}^pi r^{n-1}left(sqrt{r^2 +t^2}right)^{-alpha} e^{i r |k| cos(phi)} dphi dr $$
where $S_n$ is the surface area of the $n$-sphere given by
$$ S_{n-1} =frac{npi^frac{n}{2}}{Gammaleft(frac{n}{2}+1 right)}.$$



The integral over $phi$ can be easily executed with the result
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty frac{pi r^{n-1} J_0(r |k|)}{(r^2+t^2)^{alpha/2}} dr,. $$
I am not sure about the remaining integral. Maybe somebody has an idea...






share|cite|improve this answer









$endgroup$













  • $begingroup$
    It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
    $endgroup$
    – reuns
    Jan 15 at 11:02
















1












1








1





$begingroup$

You are interested in obtaining an explicit expression for
$$I(k,t) =frac{1}{(2pi)^{n/2}} intleft(sqrt{|x|^2 +t^2}right)^{-alpha} e^{i xcdot k} d^n x,.$$
Let us introduce spherical coordinates with the first coordinate of $x$ with component $r cos phi$ pointing along $k$. We thus reduce the integral to the form
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty int_{0}^pi r^{n-1}left(sqrt{r^2 +t^2}right)^{-alpha} e^{i r |k| cos(phi)} dphi dr $$
where $S_n$ is the surface area of the $n$-sphere given by
$$ S_{n-1} =frac{npi^frac{n}{2}}{Gammaleft(frac{n}{2}+1 right)}.$$



The integral over $phi$ can be easily executed with the result
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty frac{pi r^{n-1} J_0(r |k|)}{(r^2+t^2)^{alpha/2}} dr,. $$
I am not sure about the remaining integral. Maybe somebody has an idea...






share|cite|improve this answer









$endgroup$



You are interested in obtaining an explicit expression for
$$I(k,t) =frac{1}{(2pi)^{n/2}} intleft(sqrt{|x|^2 +t^2}right)^{-alpha} e^{i xcdot k} d^n x,.$$
Let us introduce spherical coordinates with the first coordinate of $x$ with component $r cos phi$ pointing along $k$. We thus reduce the integral to the form
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty int_{0}^pi r^{n-1}left(sqrt{r^2 +t^2}right)^{-alpha} e^{i r |k| cos(phi)} dphi dr $$
where $S_n$ is the surface area of the $n$-sphere given by
$$ S_{n-1} =frac{npi^frac{n}{2}}{Gammaleft(frac{n}{2}+1 right)}.$$



The integral over $phi$ can be easily executed with the result
$$I(k,t) =frac{S_{n-2}}{(2pi)^{n/2}} int_0^infty frac{pi r^{n-1} J_0(r |k|)}{(r^2+t^2)^{alpha/2}} dr,. $$
I am not sure about the remaining integral. Maybe somebody has an idea...







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 15 at 9:51









FabianFabian

19.7k3674




19.7k3674












  • $begingroup$
    It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
    $endgroup$
    – reuns
    Jan 15 at 11:02




















  • $begingroup$
    It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
    $endgroup$
    – reuns
    Jan 15 at 11:02


















$begingroup$
It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
$endgroup$
– reuns
Jan 15 at 11:02






$begingroup$
It is also $frac{1}{pi}int_0^infty (r^2+u^2)^c cos(ut)du, c =( alpha-d-1)/2,r=|x|$
$endgroup$
– reuns
Jan 15 at 11:02




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074216%2fwhat-is-fourier-transform-of-x-t-alpha%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

The Binding of Isaac: Rebirth/Afterbirth

Mario Kart Wii

Dobbiaco