Lebesgue Integral of $e^x$












1












$begingroup$


I want to show that that $f_{alpha}: ]0,infty[ to mathbb{R}$, where $x to e^{-alpha x}$ for any $alpha gt 0, alpha in mathbb{R}$ is Lebesgue integrable, i.e. $$int_{]0,infty[}abs(f_{alpha})dlambda ltinfty$$
Since I am not allowed to calculate the integral with Riemannian methods, I want to write out the integral expliclitly. For that I need a sequence of simple functions converging to $f_{alpha}$, something I cannot find. Otherwise, I could write $e^{-alpha x}$ as a composition of $e^x$ and $-alpha x$ and then use an according theorem, but there I would still need to calculate $e^x$. So this should look like $$int_{]0,infty[}f_{alpha}dlambda=sup_{kinmathbb{N}}int_{]0,infty[}f_{alpha,k}dlambda=sup_{kinmathbb{N}}left(sum_{i=0}^Nbeta_ilambda(A_i)right)_{alpha, k}$$with $lambda$ being the ordinary Borel-Lebesgue measure. I am now looking for $f_{alpha, k}=sum_{i=0}^Nbeta_i 1_{A_i}$. Any help greatly apppreciated!










share|cite|improve this question









$endgroup$












  • $begingroup$
    $A_i$ being of course subsets of $]0,infty[$ with $bigcup_{iinmathbb{N}}A_i=]0,infty[$
    $endgroup$
    – Michael Maier
    Jan 15 at 8:32


















1












$begingroup$


I want to show that that $f_{alpha}: ]0,infty[ to mathbb{R}$, where $x to e^{-alpha x}$ for any $alpha gt 0, alpha in mathbb{R}$ is Lebesgue integrable, i.e. $$int_{]0,infty[}abs(f_{alpha})dlambda ltinfty$$
Since I am not allowed to calculate the integral with Riemannian methods, I want to write out the integral expliclitly. For that I need a sequence of simple functions converging to $f_{alpha}$, something I cannot find. Otherwise, I could write $e^{-alpha x}$ as a composition of $e^x$ and $-alpha x$ and then use an according theorem, but there I would still need to calculate $e^x$. So this should look like $$int_{]0,infty[}f_{alpha}dlambda=sup_{kinmathbb{N}}int_{]0,infty[}f_{alpha,k}dlambda=sup_{kinmathbb{N}}left(sum_{i=0}^Nbeta_ilambda(A_i)right)_{alpha, k}$$with $lambda$ being the ordinary Borel-Lebesgue measure. I am now looking for $f_{alpha, k}=sum_{i=0}^Nbeta_i 1_{A_i}$. Any help greatly apppreciated!










share|cite|improve this question









$endgroup$












  • $begingroup$
    $A_i$ being of course subsets of $]0,infty[$ with $bigcup_{iinmathbb{N}}A_i=]0,infty[$
    $endgroup$
    – Michael Maier
    Jan 15 at 8:32
















1












1








1


2



$begingroup$


I want to show that that $f_{alpha}: ]0,infty[ to mathbb{R}$, where $x to e^{-alpha x}$ for any $alpha gt 0, alpha in mathbb{R}$ is Lebesgue integrable, i.e. $$int_{]0,infty[}abs(f_{alpha})dlambda ltinfty$$
Since I am not allowed to calculate the integral with Riemannian methods, I want to write out the integral expliclitly. For that I need a sequence of simple functions converging to $f_{alpha}$, something I cannot find. Otherwise, I could write $e^{-alpha x}$ as a composition of $e^x$ and $-alpha x$ and then use an according theorem, but there I would still need to calculate $e^x$. So this should look like $$int_{]0,infty[}f_{alpha}dlambda=sup_{kinmathbb{N}}int_{]0,infty[}f_{alpha,k}dlambda=sup_{kinmathbb{N}}left(sum_{i=0}^Nbeta_ilambda(A_i)right)_{alpha, k}$$with $lambda$ being the ordinary Borel-Lebesgue measure. I am now looking for $f_{alpha, k}=sum_{i=0}^Nbeta_i 1_{A_i}$. Any help greatly apppreciated!










share|cite|improve this question









$endgroup$




I want to show that that $f_{alpha}: ]0,infty[ to mathbb{R}$, where $x to e^{-alpha x}$ for any $alpha gt 0, alpha in mathbb{R}$ is Lebesgue integrable, i.e. $$int_{]0,infty[}abs(f_{alpha})dlambda ltinfty$$
Since I am not allowed to calculate the integral with Riemannian methods, I want to write out the integral expliclitly. For that I need a sequence of simple functions converging to $f_{alpha}$, something I cannot find. Otherwise, I could write $e^{-alpha x}$ as a composition of $e^x$ and $-alpha x$ and then use an according theorem, but there I would still need to calculate $e^x$. So this should look like $$int_{]0,infty[}f_{alpha}dlambda=sup_{kinmathbb{N}}int_{]0,infty[}f_{alpha,k}dlambda=sup_{kinmathbb{N}}left(sum_{i=0}^Nbeta_ilambda(A_i)right)_{alpha, k}$$with $lambda$ being the ordinary Borel-Lebesgue measure. I am now looking for $f_{alpha, k}=sum_{i=0}^Nbeta_i 1_{A_i}$. Any help greatly apppreciated!







real-analysis measure-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 15 at 8:30









Michael MaierMichael Maier

859




859












  • $begingroup$
    $A_i$ being of course subsets of $]0,infty[$ with $bigcup_{iinmathbb{N}}A_i=]0,infty[$
    $endgroup$
    – Michael Maier
    Jan 15 at 8:32




















  • $begingroup$
    $A_i$ being of course subsets of $]0,infty[$ with $bigcup_{iinmathbb{N}}A_i=]0,infty[$
    $endgroup$
    – Michael Maier
    Jan 15 at 8:32


















$begingroup$
$A_i$ being of course subsets of $]0,infty[$ with $bigcup_{iinmathbb{N}}A_i=]0,infty[$
$endgroup$
– Michael Maier
Jan 15 at 8:32






$begingroup$
$A_i$ being of course subsets of $]0,infty[$ with $bigcup_{iinmathbb{N}}A_i=]0,infty[$
$endgroup$
– Michael Maier
Jan 15 at 8:32












1 Answer
1






active

oldest

votes


















2












$begingroup$

Take $f_{alpha,k} =sumlimits_{j=1}^{k} frac 1 {j^{2}} I_{A_j}$ where $A_j=(frac {2 ln , j} {alpha},frac {2 ln , (j+1)} {alpha})$. Note that if $x in A_j$ then $e^{-alpha, x}$ lies between $frac 1 {(j+1)^{2}}$ and $frac 1 {j^{2}}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    One question: If I want $f_{alpha, k} to f_{alpha}$, following your proposal, let $ktoinfty$, hence $f_{alpha, k} to sum_{j=1}^infty frac{1}{j^2}1_{A_j}$. I don't quite see how this approaches $e^{-alpha x} = sum_{j=1}^infty frac{1}{j!}(-alpha x)^j$
    $endgroup$
    – Michael Maier
    Jan 15 at 8:57








  • 1




    $begingroup$
    @MichaelMaier Any $x$ lies in one of the sets $A_j$. For that $j$, $|e^{-alpha, x} -f_{alpha,k} (x)| leq frac 1 {j^{2}} -frac 1 {(j+1)^{2}}$ because if to numbers are in an interval $(a,b)$ then their difference is less than or equal to $b-a$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 15 at 9:02













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074191%2flebesgue-integral-of-ex%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Take $f_{alpha,k} =sumlimits_{j=1}^{k} frac 1 {j^{2}} I_{A_j}$ where $A_j=(frac {2 ln , j} {alpha},frac {2 ln , (j+1)} {alpha})$. Note that if $x in A_j$ then $e^{-alpha, x}$ lies between $frac 1 {(j+1)^{2}}$ and $frac 1 {j^{2}}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    One question: If I want $f_{alpha, k} to f_{alpha}$, following your proposal, let $ktoinfty$, hence $f_{alpha, k} to sum_{j=1}^infty frac{1}{j^2}1_{A_j}$. I don't quite see how this approaches $e^{-alpha x} = sum_{j=1}^infty frac{1}{j!}(-alpha x)^j$
    $endgroup$
    – Michael Maier
    Jan 15 at 8:57








  • 1




    $begingroup$
    @MichaelMaier Any $x$ lies in one of the sets $A_j$. For that $j$, $|e^{-alpha, x} -f_{alpha,k} (x)| leq frac 1 {j^{2}} -frac 1 {(j+1)^{2}}$ because if to numbers are in an interval $(a,b)$ then their difference is less than or equal to $b-a$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 15 at 9:02


















2












$begingroup$

Take $f_{alpha,k} =sumlimits_{j=1}^{k} frac 1 {j^{2}} I_{A_j}$ where $A_j=(frac {2 ln , j} {alpha},frac {2 ln , (j+1)} {alpha})$. Note that if $x in A_j$ then $e^{-alpha, x}$ lies between $frac 1 {(j+1)^{2}}$ and $frac 1 {j^{2}}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    One question: If I want $f_{alpha, k} to f_{alpha}$, following your proposal, let $ktoinfty$, hence $f_{alpha, k} to sum_{j=1}^infty frac{1}{j^2}1_{A_j}$. I don't quite see how this approaches $e^{-alpha x} = sum_{j=1}^infty frac{1}{j!}(-alpha x)^j$
    $endgroup$
    – Michael Maier
    Jan 15 at 8:57








  • 1




    $begingroup$
    @MichaelMaier Any $x$ lies in one of the sets $A_j$. For that $j$, $|e^{-alpha, x} -f_{alpha,k} (x)| leq frac 1 {j^{2}} -frac 1 {(j+1)^{2}}$ because if to numbers are in an interval $(a,b)$ then their difference is less than or equal to $b-a$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 15 at 9:02
















2












2








2





$begingroup$

Take $f_{alpha,k} =sumlimits_{j=1}^{k} frac 1 {j^{2}} I_{A_j}$ where $A_j=(frac {2 ln , j} {alpha},frac {2 ln , (j+1)} {alpha})$. Note that if $x in A_j$ then $e^{-alpha, x}$ lies between $frac 1 {(j+1)^{2}}$ and $frac 1 {j^{2}}$.






share|cite|improve this answer









$endgroup$



Take $f_{alpha,k} =sumlimits_{j=1}^{k} frac 1 {j^{2}} I_{A_j}$ where $A_j=(frac {2 ln , j} {alpha},frac {2 ln , (j+1)} {alpha})$. Note that if $x in A_j$ then $e^{-alpha, x}$ lies between $frac 1 {(j+1)^{2}}$ and $frac 1 {j^{2}}$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 15 at 8:38









Kavi Rama MurthyKavi Rama Murthy

57.8k42160




57.8k42160












  • $begingroup$
    One question: If I want $f_{alpha, k} to f_{alpha}$, following your proposal, let $ktoinfty$, hence $f_{alpha, k} to sum_{j=1}^infty frac{1}{j^2}1_{A_j}$. I don't quite see how this approaches $e^{-alpha x} = sum_{j=1}^infty frac{1}{j!}(-alpha x)^j$
    $endgroup$
    – Michael Maier
    Jan 15 at 8:57








  • 1




    $begingroup$
    @MichaelMaier Any $x$ lies in one of the sets $A_j$. For that $j$, $|e^{-alpha, x} -f_{alpha,k} (x)| leq frac 1 {j^{2}} -frac 1 {(j+1)^{2}}$ because if to numbers are in an interval $(a,b)$ then their difference is less than or equal to $b-a$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 15 at 9:02




















  • $begingroup$
    One question: If I want $f_{alpha, k} to f_{alpha}$, following your proposal, let $ktoinfty$, hence $f_{alpha, k} to sum_{j=1}^infty frac{1}{j^2}1_{A_j}$. I don't quite see how this approaches $e^{-alpha x} = sum_{j=1}^infty frac{1}{j!}(-alpha x)^j$
    $endgroup$
    – Michael Maier
    Jan 15 at 8:57








  • 1




    $begingroup$
    @MichaelMaier Any $x$ lies in one of the sets $A_j$. For that $j$, $|e^{-alpha, x} -f_{alpha,k} (x)| leq frac 1 {j^{2}} -frac 1 {(j+1)^{2}}$ because if to numbers are in an interval $(a,b)$ then their difference is less than or equal to $b-a$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 15 at 9:02


















$begingroup$
One question: If I want $f_{alpha, k} to f_{alpha}$, following your proposal, let $ktoinfty$, hence $f_{alpha, k} to sum_{j=1}^infty frac{1}{j^2}1_{A_j}$. I don't quite see how this approaches $e^{-alpha x} = sum_{j=1}^infty frac{1}{j!}(-alpha x)^j$
$endgroup$
– Michael Maier
Jan 15 at 8:57






$begingroup$
One question: If I want $f_{alpha, k} to f_{alpha}$, following your proposal, let $ktoinfty$, hence $f_{alpha, k} to sum_{j=1}^infty frac{1}{j^2}1_{A_j}$. I don't quite see how this approaches $e^{-alpha x} = sum_{j=1}^infty frac{1}{j!}(-alpha x)^j$
$endgroup$
– Michael Maier
Jan 15 at 8:57






1




1




$begingroup$
@MichaelMaier Any $x$ lies in one of the sets $A_j$. For that $j$, $|e^{-alpha, x} -f_{alpha,k} (x)| leq frac 1 {j^{2}} -frac 1 {(j+1)^{2}}$ because if to numbers are in an interval $(a,b)$ then their difference is less than or equal to $b-a$.
$endgroup$
– Kavi Rama Murthy
Jan 15 at 9:02






$begingroup$
@MichaelMaier Any $x$ lies in one of the sets $A_j$. For that $j$, $|e^{-alpha, x} -f_{alpha,k} (x)| leq frac 1 {j^{2}} -frac 1 {(j+1)^{2}}$ because if to numbers are in an interval $(a,b)$ then their difference is less than or equal to $b-a$.
$endgroup$
– Kavi Rama Murthy
Jan 15 at 9:02




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074191%2flebesgue-integral-of-ex%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

The Binding of Isaac: Rebirth/Afterbirth

Mario Kart Wii

Dobbiaco