Finding $lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}$












0












$begingroup$



Finding $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}$$




Try: put $h=1-x$



$$lim_{hrightarrow 0}frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$



D, L Hopital rule



$$lim_{hrightarrow 0}frac{sqrt{h}}{sqrt{2sin^{-1}(1-h)}}cdot frac{2}{sqrt{1-(1-h)^2}}=sqrt{frac{2}{pi}}$$



could some help me how to solve without D L Hopital Rule










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
    $endgroup$
    – Arthur
    Jan 15 at 7:42


















0












$begingroup$



Finding $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}$$




Try: put $h=1-x$



$$lim_{hrightarrow 0}frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$



D, L Hopital rule



$$lim_{hrightarrow 0}frac{sqrt{h}}{sqrt{2sin^{-1}(1-h)}}cdot frac{2}{sqrt{1-(1-h)^2}}=sqrt{frac{2}{pi}}$$



could some help me how to solve without D L Hopital Rule










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
    $endgroup$
    – Arthur
    Jan 15 at 7:42
















0












0








0





$begingroup$



Finding $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}$$




Try: put $h=1-x$



$$lim_{hrightarrow 0}frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$



D, L Hopital rule



$$lim_{hrightarrow 0}frac{sqrt{h}}{sqrt{2sin^{-1}(1-h)}}cdot frac{2}{sqrt{1-(1-h)^2}}=sqrt{frac{2}{pi}}$$



could some help me how to solve without D L Hopital Rule










share|cite|improve this question









$endgroup$





Finding $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}$$




Try: put $h=1-x$



$$lim_{hrightarrow 0}frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$



D, L Hopital rule



$$lim_{hrightarrow 0}frac{sqrt{h}}{sqrt{2sin^{-1}(1-h)}}cdot frac{2}{sqrt{1-(1-h)^2}}=sqrt{frac{2}{pi}}$$



could some help me how to solve without D L Hopital Rule







limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 15 at 7:26









DXTDXT

5,6742630




5,6742630








  • 1




    $begingroup$
    It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
    $endgroup$
    – Arthur
    Jan 15 at 7:42
















  • 1




    $begingroup$
    It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
    $endgroup$
    – Arthur
    Jan 15 at 7:42










1




1




$begingroup$
It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
$endgroup$
– Arthur
Jan 15 at 7:42






$begingroup$
It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
$endgroup$
– Arthur
Jan 15 at 7:42












4 Answers
4






active

oldest

votes


















1












$begingroup$

$$lim_{xto1^-}dfrac{sqrtpi-sqrt{2sin^{-1}x}}{sqrt{1-x}}=lim_{xto1^-}dfrac1{sqrtpi+sqrt{2sin^{-1}x}}cdotlim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}$$



Using Why it's true? $arcsin(x) +arccos(x) = frac{pi}{2}$



$$F=lim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}=lim_{xto1^-}dfrac{2cos^{-1}x}{sqrt{1-x}}$$



Set $sqrt{1-x}=himplies x=1-h^2$



$$F=2lim_{hto0^+}dfrac{cos^{-1}(1-h^2)}h=2lim_{hto0^+}dfrac{sin^{-1}sqrt{1-(1-h^2)^2}}h$$



$$=2lim_{hto0^+}dfrac{sin^{-1}(hsqrt{2-h^2})}{hsqrt{2-h^2}}cdotlim_{hto0^+}sqrt{2-h^2}=?$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    If it is ok to use $lim_{uto 0}frac{sin u}{u} = 1$, then a possible way is setting $x=sin t$ and consider $tto frac{pi}{2}^-$:



    begin{eqnarray*} frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}
    & stackrel{x=sin t}{=} & frac{sqrt{pi}-sqrt{2t}}{sqrt{1-sin t}} \
    & = & color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}cdot underbrace{sqrt{1+sin t}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{sqrt{2}}} \
    end{eqnarray*}



    begin{eqnarray*} color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}
    & = & color{orange}{frac{pi-2t}{cos t}} cdot underbrace{frac{1}{sqrt{pi} + sqrt{2t}}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{frac{1}{2sqrt{pi}}}}\
    end{eqnarray*}



    begin{eqnarray*} color{orange}{frac{pi-2t}{cos t}}
    & stackrel{t = u + frac{pi}{2}}{=} & underbrace{frac{-2u}{-sin u}}_{stackrel{u to 0^-}{longrightarrow}color{green}{2}}\
    end{eqnarray*}



    All together:
    $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}} = color{green}{sqrt{2}cdot frac{1}{2sqrt{pi}} cdot 2} = boxed{frac{sqrt{2}}{sqrt{pi}}}$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      As you wrote $$y=frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$



      Now, by Taylor series built at $h=0$
      $$sin^{-1}(1-h)=frac{pi }{2}-sqrt{2} h^{1/2}-frac{h^{3/2}}{6 sqrt{2}}+Oleft(h^{5/2}right)$$
      $$2sin^{-1}(1-h)=pi -2sqrt{2} h^{1/2}-frac{h^{3/2}}{3 sqrt{2}}+Oleft(h^{5/2}right)$$ Continuing with the binomial expansion
      $$sqrt{2sin^{-1}(1-h) }=sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
      ^{3/2}}+Oleft(h^{3/2}right)$$
      making
      $$y=frac{sqrt{pi}-left(sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
      ^{3/2}}+Oleft(h^{3/2}right)right)}{sqrt{h}}=frac{sqrt{frac{2}{pi }} sqrt{h}+frac{h}{pi
      ^{3/2}}+Oleft(h^{3/2}right)}{sqrt{h}}$$
      that is to say
      $$y=sqrt{frac{2}{pi }} +frac{sqrt h}{pi
      ^{3/2}}+Oleft(hright)$$






      share|cite|improve this answer









      $endgroup$





















        1












        $begingroup$

        If you substitute $y=sqrt{1-x}$, then $x=1-y^2$ and the limit becomes
        $$
        lim_{yto0^+}frac{sqrt{pi}-sqrt{2arcsinsqrt{1-y^2}}}{y}
        $$

        Not a simplification? Let's see. If $theta=arcsinsqrt{1-y^2}$, then $sqrt{1-y^2}=sintheta$ and so $y=costheta$ and $theta=arccos y$.



        Thus your limit is
        $$
        lim_{yto0^+}frac{sqrt{pi}-sqrt{2arccos y}}{y}=
        lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{pi/2-arccos y}{y}=
        lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{arcsin y}{y}$$






        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074160%2ffinding-lim-x-rightarrow-1-frac-sqrt-pi-sqrt2-sin-1x-sqrt1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          $$lim_{xto1^-}dfrac{sqrtpi-sqrt{2sin^{-1}x}}{sqrt{1-x}}=lim_{xto1^-}dfrac1{sqrtpi+sqrt{2sin^{-1}x}}cdotlim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}$$



          Using Why it's true? $arcsin(x) +arccos(x) = frac{pi}{2}$



          $$F=lim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}=lim_{xto1^-}dfrac{2cos^{-1}x}{sqrt{1-x}}$$



          Set $sqrt{1-x}=himplies x=1-h^2$



          $$F=2lim_{hto0^+}dfrac{cos^{-1}(1-h^2)}h=2lim_{hto0^+}dfrac{sin^{-1}sqrt{1-(1-h^2)^2}}h$$



          $$=2lim_{hto0^+}dfrac{sin^{-1}(hsqrt{2-h^2})}{hsqrt{2-h^2}}cdotlim_{hto0^+}sqrt{2-h^2}=?$$






          share|cite|improve this answer









          $endgroup$


















            1












            $begingroup$

            $$lim_{xto1^-}dfrac{sqrtpi-sqrt{2sin^{-1}x}}{sqrt{1-x}}=lim_{xto1^-}dfrac1{sqrtpi+sqrt{2sin^{-1}x}}cdotlim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}$$



            Using Why it's true? $arcsin(x) +arccos(x) = frac{pi}{2}$



            $$F=lim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}=lim_{xto1^-}dfrac{2cos^{-1}x}{sqrt{1-x}}$$



            Set $sqrt{1-x}=himplies x=1-h^2$



            $$F=2lim_{hto0^+}dfrac{cos^{-1}(1-h^2)}h=2lim_{hto0^+}dfrac{sin^{-1}sqrt{1-(1-h^2)^2}}h$$



            $$=2lim_{hto0^+}dfrac{sin^{-1}(hsqrt{2-h^2})}{hsqrt{2-h^2}}cdotlim_{hto0^+}sqrt{2-h^2}=?$$






            share|cite|improve this answer









            $endgroup$
















              1












              1








              1





              $begingroup$

              $$lim_{xto1^-}dfrac{sqrtpi-sqrt{2sin^{-1}x}}{sqrt{1-x}}=lim_{xto1^-}dfrac1{sqrtpi+sqrt{2sin^{-1}x}}cdotlim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}$$



              Using Why it's true? $arcsin(x) +arccos(x) = frac{pi}{2}$



              $$F=lim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}=lim_{xto1^-}dfrac{2cos^{-1}x}{sqrt{1-x}}$$



              Set $sqrt{1-x}=himplies x=1-h^2$



              $$F=2lim_{hto0^+}dfrac{cos^{-1}(1-h^2)}h=2lim_{hto0^+}dfrac{sin^{-1}sqrt{1-(1-h^2)^2}}h$$



              $$=2lim_{hto0^+}dfrac{sin^{-1}(hsqrt{2-h^2})}{hsqrt{2-h^2}}cdotlim_{hto0^+}sqrt{2-h^2}=?$$






              share|cite|improve this answer









              $endgroup$



              $$lim_{xto1^-}dfrac{sqrtpi-sqrt{2sin^{-1}x}}{sqrt{1-x}}=lim_{xto1^-}dfrac1{sqrtpi+sqrt{2sin^{-1}x}}cdotlim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}$$



              Using Why it's true? $arcsin(x) +arccos(x) = frac{pi}{2}$



              $$F=lim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}=lim_{xto1^-}dfrac{2cos^{-1}x}{sqrt{1-x}}$$



              Set $sqrt{1-x}=himplies x=1-h^2$



              $$F=2lim_{hto0^+}dfrac{cos^{-1}(1-h^2)}h=2lim_{hto0^+}dfrac{sin^{-1}sqrt{1-(1-h^2)^2}}h$$



              $$=2lim_{hto0^+}dfrac{sin^{-1}(hsqrt{2-h^2})}{hsqrt{2-h^2}}cdotlim_{hto0^+}sqrt{2-h^2}=?$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 15 at 7:51









              lab bhattacharjeelab bhattacharjee

              225k15157275




              225k15157275























                  1












                  $begingroup$

                  If it is ok to use $lim_{uto 0}frac{sin u}{u} = 1$, then a possible way is setting $x=sin t$ and consider $tto frac{pi}{2}^-$:



                  begin{eqnarray*} frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}
                  & stackrel{x=sin t}{=} & frac{sqrt{pi}-sqrt{2t}}{sqrt{1-sin t}} \
                  & = & color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}cdot underbrace{sqrt{1+sin t}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{sqrt{2}}} \
                  end{eqnarray*}



                  begin{eqnarray*} color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}
                  & = & color{orange}{frac{pi-2t}{cos t}} cdot underbrace{frac{1}{sqrt{pi} + sqrt{2t}}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{frac{1}{2sqrt{pi}}}}\
                  end{eqnarray*}



                  begin{eqnarray*} color{orange}{frac{pi-2t}{cos t}}
                  & stackrel{t = u + frac{pi}{2}}{=} & underbrace{frac{-2u}{-sin u}}_{stackrel{u to 0^-}{longrightarrow}color{green}{2}}\
                  end{eqnarray*}



                  All together:
                  $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}} = color{green}{sqrt{2}cdot frac{1}{2sqrt{pi}} cdot 2} = boxed{frac{sqrt{2}}{sqrt{pi}}}$$






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    If it is ok to use $lim_{uto 0}frac{sin u}{u} = 1$, then a possible way is setting $x=sin t$ and consider $tto frac{pi}{2}^-$:



                    begin{eqnarray*} frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}
                    & stackrel{x=sin t}{=} & frac{sqrt{pi}-sqrt{2t}}{sqrt{1-sin t}} \
                    & = & color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}cdot underbrace{sqrt{1+sin t}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{sqrt{2}}} \
                    end{eqnarray*}



                    begin{eqnarray*} color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}
                    & = & color{orange}{frac{pi-2t}{cos t}} cdot underbrace{frac{1}{sqrt{pi} + sqrt{2t}}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{frac{1}{2sqrt{pi}}}}\
                    end{eqnarray*}



                    begin{eqnarray*} color{orange}{frac{pi-2t}{cos t}}
                    & stackrel{t = u + frac{pi}{2}}{=} & underbrace{frac{-2u}{-sin u}}_{stackrel{u to 0^-}{longrightarrow}color{green}{2}}\
                    end{eqnarray*}



                    All together:
                    $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}} = color{green}{sqrt{2}cdot frac{1}{2sqrt{pi}} cdot 2} = boxed{frac{sqrt{2}}{sqrt{pi}}}$$






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      If it is ok to use $lim_{uto 0}frac{sin u}{u} = 1$, then a possible way is setting $x=sin t$ and consider $tto frac{pi}{2}^-$:



                      begin{eqnarray*} frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}
                      & stackrel{x=sin t}{=} & frac{sqrt{pi}-sqrt{2t}}{sqrt{1-sin t}} \
                      & = & color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}cdot underbrace{sqrt{1+sin t}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{sqrt{2}}} \
                      end{eqnarray*}



                      begin{eqnarray*} color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}
                      & = & color{orange}{frac{pi-2t}{cos t}} cdot underbrace{frac{1}{sqrt{pi} + sqrt{2t}}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{frac{1}{2sqrt{pi}}}}\
                      end{eqnarray*}



                      begin{eqnarray*} color{orange}{frac{pi-2t}{cos t}}
                      & stackrel{t = u + frac{pi}{2}}{=} & underbrace{frac{-2u}{-sin u}}_{stackrel{u to 0^-}{longrightarrow}color{green}{2}}\
                      end{eqnarray*}



                      All together:
                      $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}} = color{green}{sqrt{2}cdot frac{1}{2sqrt{pi}} cdot 2} = boxed{frac{sqrt{2}}{sqrt{pi}}}$$






                      share|cite|improve this answer









                      $endgroup$



                      If it is ok to use $lim_{uto 0}frac{sin u}{u} = 1$, then a possible way is setting $x=sin t$ and consider $tto frac{pi}{2}^-$:



                      begin{eqnarray*} frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}
                      & stackrel{x=sin t}{=} & frac{sqrt{pi}-sqrt{2t}}{sqrt{1-sin t}} \
                      & = & color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}cdot underbrace{sqrt{1+sin t}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{sqrt{2}}} \
                      end{eqnarray*}



                      begin{eqnarray*} color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}
                      & = & color{orange}{frac{pi-2t}{cos t}} cdot underbrace{frac{1}{sqrt{pi} + sqrt{2t}}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{frac{1}{2sqrt{pi}}}}\
                      end{eqnarray*}



                      begin{eqnarray*} color{orange}{frac{pi-2t}{cos t}}
                      & stackrel{t = u + frac{pi}{2}}{=} & underbrace{frac{-2u}{-sin u}}_{stackrel{u to 0^-}{longrightarrow}color{green}{2}}\
                      end{eqnarray*}



                      All together:
                      $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}} = color{green}{sqrt{2}cdot frac{1}{2sqrt{pi}} cdot 2} = boxed{frac{sqrt{2}}{sqrt{pi}}}$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 15 at 8:30









                      trancelocationtrancelocation

                      10.8k1723




                      10.8k1723























                          1












                          $begingroup$

                          As you wrote $$y=frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$



                          Now, by Taylor series built at $h=0$
                          $$sin^{-1}(1-h)=frac{pi }{2}-sqrt{2} h^{1/2}-frac{h^{3/2}}{6 sqrt{2}}+Oleft(h^{5/2}right)$$
                          $$2sin^{-1}(1-h)=pi -2sqrt{2} h^{1/2}-frac{h^{3/2}}{3 sqrt{2}}+Oleft(h^{5/2}right)$$ Continuing with the binomial expansion
                          $$sqrt{2sin^{-1}(1-h) }=sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
                          ^{3/2}}+Oleft(h^{3/2}right)$$
                          making
                          $$y=frac{sqrt{pi}-left(sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
                          ^{3/2}}+Oleft(h^{3/2}right)right)}{sqrt{h}}=frac{sqrt{frac{2}{pi }} sqrt{h}+frac{h}{pi
                          ^{3/2}}+Oleft(h^{3/2}right)}{sqrt{h}}$$
                          that is to say
                          $$y=sqrt{frac{2}{pi }} +frac{sqrt h}{pi
                          ^{3/2}}+Oleft(hright)$$






                          share|cite|improve this answer









                          $endgroup$


















                            1












                            $begingroup$

                            As you wrote $$y=frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$



                            Now, by Taylor series built at $h=0$
                            $$sin^{-1}(1-h)=frac{pi }{2}-sqrt{2} h^{1/2}-frac{h^{3/2}}{6 sqrt{2}}+Oleft(h^{5/2}right)$$
                            $$2sin^{-1}(1-h)=pi -2sqrt{2} h^{1/2}-frac{h^{3/2}}{3 sqrt{2}}+Oleft(h^{5/2}right)$$ Continuing with the binomial expansion
                            $$sqrt{2sin^{-1}(1-h) }=sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
                            ^{3/2}}+Oleft(h^{3/2}right)$$
                            making
                            $$y=frac{sqrt{pi}-left(sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
                            ^{3/2}}+Oleft(h^{3/2}right)right)}{sqrt{h}}=frac{sqrt{frac{2}{pi }} sqrt{h}+frac{h}{pi
                            ^{3/2}}+Oleft(h^{3/2}right)}{sqrt{h}}$$
                            that is to say
                            $$y=sqrt{frac{2}{pi }} +frac{sqrt h}{pi
                            ^{3/2}}+Oleft(hright)$$






                            share|cite|improve this answer









                            $endgroup$
















                              1












                              1








                              1





                              $begingroup$

                              As you wrote $$y=frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$



                              Now, by Taylor series built at $h=0$
                              $$sin^{-1}(1-h)=frac{pi }{2}-sqrt{2} h^{1/2}-frac{h^{3/2}}{6 sqrt{2}}+Oleft(h^{5/2}right)$$
                              $$2sin^{-1}(1-h)=pi -2sqrt{2} h^{1/2}-frac{h^{3/2}}{3 sqrt{2}}+Oleft(h^{5/2}right)$$ Continuing with the binomial expansion
                              $$sqrt{2sin^{-1}(1-h) }=sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
                              ^{3/2}}+Oleft(h^{3/2}right)$$
                              making
                              $$y=frac{sqrt{pi}-left(sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
                              ^{3/2}}+Oleft(h^{3/2}right)right)}{sqrt{h}}=frac{sqrt{frac{2}{pi }} sqrt{h}+frac{h}{pi
                              ^{3/2}}+Oleft(h^{3/2}right)}{sqrt{h}}$$
                              that is to say
                              $$y=sqrt{frac{2}{pi }} +frac{sqrt h}{pi
                              ^{3/2}}+Oleft(hright)$$






                              share|cite|improve this answer









                              $endgroup$



                              As you wrote $$y=frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$



                              Now, by Taylor series built at $h=0$
                              $$sin^{-1}(1-h)=frac{pi }{2}-sqrt{2} h^{1/2}-frac{h^{3/2}}{6 sqrt{2}}+Oleft(h^{5/2}right)$$
                              $$2sin^{-1}(1-h)=pi -2sqrt{2} h^{1/2}-frac{h^{3/2}}{3 sqrt{2}}+Oleft(h^{5/2}right)$$ Continuing with the binomial expansion
                              $$sqrt{2sin^{-1}(1-h) }=sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
                              ^{3/2}}+Oleft(h^{3/2}right)$$
                              making
                              $$y=frac{sqrt{pi}-left(sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
                              ^{3/2}}+Oleft(h^{3/2}right)right)}{sqrt{h}}=frac{sqrt{frac{2}{pi }} sqrt{h}+frac{h}{pi
                              ^{3/2}}+Oleft(h^{3/2}right)}{sqrt{h}}$$
                              that is to say
                              $$y=sqrt{frac{2}{pi }} +frac{sqrt h}{pi
                              ^{3/2}}+Oleft(hright)$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 15 at 8:37









                              Claude LeiboviciClaude Leibovici

                              121k1157133




                              121k1157133























                                  1












                                  $begingroup$

                                  If you substitute $y=sqrt{1-x}$, then $x=1-y^2$ and the limit becomes
                                  $$
                                  lim_{yto0^+}frac{sqrt{pi}-sqrt{2arcsinsqrt{1-y^2}}}{y}
                                  $$

                                  Not a simplification? Let's see. If $theta=arcsinsqrt{1-y^2}$, then $sqrt{1-y^2}=sintheta$ and so $y=costheta$ and $theta=arccos y$.



                                  Thus your limit is
                                  $$
                                  lim_{yto0^+}frac{sqrt{pi}-sqrt{2arccos y}}{y}=
                                  lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{pi/2-arccos y}{y}=
                                  lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{arcsin y}{y}$$






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    If you substitute $y=sqrt{1-x}$, then $x=1-y^2$ and the limit becomes
                                    $$
                                    lim_{yto0^+}frac{sqrt{pi}-sqrt{2arcsinsqrt{1-y^2}}}{y}
                                    $$

                                    Not a simplification? Let's see. If $theta=arcsinsqrt{1-y^2}$, then $sqrt{1-y^2}=sintheta$ and so $y=costheta$ and $theta=arccos y$.



                                    Thus your limit is
                                    $$
                                    lim_{yto0^+}frac{sqrt{pi}-sqrt{2arccos y}}{y}=
                                    lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{pi/2-arccos y}{y}=
                                    lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{arcsin y}{y}$$






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      If you substitute $y=sqrt{1-x}$, then $x=1-y^2$ and the limit becomes
                                      $$
                                      lim_{yto0^+}frac{sqrt{pi}-sqrt{2arcsinsqrt{1-y^2}}}{y}
                                      $$

                                      Not a simplification? Let's see. If $theta=arcsinsqrt{1-y^2}$, then $sqrt{1-y^2}=sintheta$ and so $y=costheta$ and $theta=arccos y$.



                                      Thus your limit is
                                      $$
                                      lim_{yto0^+}frac{sqrt{pi}-sqrt{2arccos y}}{y}=
                                      lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{pi/2-arccos y}{y}=
                                      lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{arcsin y}{y}$$






                                      share|cite|improve this answer









                                      $endgroup$



                                      If you substitute $y=sqrt{1-x}$, then $x=1-y^2$ and the limit becomes
                                      $$
                                      lim_{yto0^+}frac{sqrt{pi}-sqrt{2arcsinsqrt{1-y^2}}}{y}
                                      $$

                                      Not a simplification? Let's see. If $theta=arcsinsqrt{1-y^2}$, then $sqrt{1-y^2}=sintheta$ and so $y=costheta$ and $theta=arccos y$.



                                      Thus your limit is
                                      $$
                                      lim_{yto0^+}frac{sqrt{pi}-sqrt{2arccos y}}{y}=
                                      lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{pi/2-arccos y}{y}=
                                      lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{arcsin y}{y}$$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 15 at 8:59









                                      egregegreg

                                      181k1485203




                                      181k1485203






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074160%2ffinding-lim-x-rightarrow-1-frac-sqrt-pi-sqrt2-sin-1x-sqrt1%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          The Binding of Isaac: Rebirth/Afterbirth

                                          Mario Kart Wii

                                          Dobbiaco