Finding $lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}$
$begingroup$
Finding $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}$$
Try: put $h=1-x$
$$lim_{hrightarrow 0}frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$
D, L Hopital rule
$$lim_{hrightarrow 0}frac{sqrt{h}}{sqrt{2sin^{-1}(1-h)}}cdot frac{2}{sqrt{1-(1-h)^2}}=sqrt{frac{2}{pi}}$$
could some help me how to solve without D L Hopital Rule
limits
$endgroup$
add a comment |
$begingroup$
Finding $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}$$
Try: put $h=1-x$
$$lim_{hrightarrow 0}frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$
D, L Hopital rule
$$lim_{hrightarrow 0}frac{sqrt{h}}{sqrt{2sin^{-1}(1-h)}}cdot frac{2}{sqrt{1-(1-h)^2}}=sqrt{frac{2}{pi}}$$
could some help me how to solve without D L Hopital Rule
limits
$endgroup$
1
$begingroup$
It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
$endgroup$
– Arthur
Jan 15 at 7:42
add a comment |
$begingroup$
Finding $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}$$
Try: put $h=1-x$
$$lim_{hrightarrow 0}frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$
D, L Hopital rule
$$lim_{hrightarrow 0}frac{sqrt{h}}{sqrt{2sin^{-1}(1-h)}}cdot frac{2}{sqrt{1-(1-h)^2}}=sqrt{frac{2}{pi}}$$
could some help me how to solve without D L Hopital Rule
limits
$endgroup$
Finding $$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}$$
Try: put $h=1-x$
$$lim_{hrightarrow 0}frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$
D, L Hopital rule
$$lim_{hrightarrow 0}frac{sqrt{h}}{sqrt{2sin^{-1}(1-h)}}cdot frac{2}{sqrt{1-(1-h)^2}}=sqrt{frac{2}{pi}}$$
could some help me how to solve without D L Hopital Rule
limits
limits
asked Jan 15 at 7:26
DXTDXT
5,6742630
5,6742630
1
$begingroup$
It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
$endgroup$
– Arthur
Jan 15 at 7:42
add a comment |
1
$begingroup$
It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
$endgroup$
– Arthur
Jan 15 at 7:42
1
1
$begingroup$
It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
$endgroup$
– Arthur
Jan 15 at 7:42
$begingroup$
It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
$endgroup$
– Arthur
Jan 15 at 7:42
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$lim_{xto1^-}dfrac{sqrtpi-sqrt{2sin^{-1}x}}{sqrt{1-x}}=lim_{xto1^-}dfrac1{sqrtpi+sqrt{2sin^{-1}x}}cdotlim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}$$
Using Why it's true? $arcsin(x) +arccos(x) = frac{pi}{2}$
$$F=lim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}=lim_{xto1^-}dfrac{2cos^{-1}x}{sqrt{1-x}}$$
Set $sqrt{1-x}=himplies x=1-h^2$
$$F=2lim_{hto0^+}dfrac{cos^{-1}(1-h^2)}h=2lim_{hto0^+}dfrac{sin^{-1}sqrt{1-(1-h^2)^2}}h$$
$$=2lim_{hto0^+}dfrac{sin^{-1}(hsqrt{2-h^2})}{hsqrt{2-h^2}}cdotlim_{hto0^+}sqrt{2-h^2}=?$$
$endgroup$
add a comment |
$begingroup$
If it is ok to use $lim_{uto 0}frac{sin u}{u} = 1$, then a possible way is setting $x=sin t$ and consider $tto frac{pi}{2}^-$:
begin{eqnarray*} frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}
& stackrel{x=sin t}{=} & frac{sqrt{pi}-sqrt{2t}}{sqrt{1-sin t}} \
& = & color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}cdot underbrace{sqrt{1+sin t}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{sqrt{2}}} \
end{eqnarray*}
begin{eqnarray*} color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}
& = & color{orange}{frac{pi-2t}{cos t}} cdot underbrace{frac{1}{sqrt{pi} + sqrt{2t}}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{frac{1}{2sqrt{pi}}}}\
end{eqnarray*}
begin{eqnarray*} color{orange}{frac{pi-2t}{cos t}}
& stackrel{t = u + frac{pi}{2}}{=} & underbrace{frac{-2u}{-sin u}}_{stackrel{u to 0^-}{longrightarrow}color{green}{2}}\
end{eqnarray*}
All together:
$$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}} = color{green}{sqrt{2}cdot frac{1}{2sqrt{pi}} cdot 2} = boxed{frac{sqrt{2}}{sqrt{pi}}}$$
$endgroup$
add a comment |
$begingroup$
As you wrote $$y=frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$
Now, by Taylor series built at $h=0$
$$sin^{-1}(1-h)=frac{pi }{2}-sqrt{2} h^{1/2}-frac{h^{3/2}}{6 sqrt{2}}+Oleft(h^{5/2}right)$$
$$2sin^{-1}(1-h)=pi -2sqrt{2} h^{1/2}-frac{h^{3/2}}{3 sqrt{2}}+Oleft(h^{5/2}right)$$ Continuing with the binomial expansion
$$sqrt{2sin^{-1}(1-h) }=sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)$$ making
$$y=frac{sqrt{pi}-left(sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)right)}{sqrt{h}}=frac{sqrt{frac{2}{pi }} sqrt{h}+frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)}{sqrt{h}}$$ that is to say
$$y=sqrt{frac{2}{pi }} +frac{sqrt h}{pi
^{3/2}}+Oleft(hright)$$
$endgroup$
add a comment |
$begingroup$
If you substitute $y=sqrt{1-x}$, then $x=1-y^2$ and the limit becomes
$$
lim_{yto0^+}frac{sqrt{pi}-sqrt{2arcsinsqrt{1-y^2}}}{y}
$$
Not a simplification? Let's see. If $theta=arcsinsqrt{1-y^2}$, then $sqrt{1-y^2}=sintheta$ and so $y=costheta$ and $theta=arccos y$.
Thus your limit is
$$
lim_{yto0^+}frac{sqrt{pi}-sqrt{2arccos y}}{y}=
lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{pi/2-arccos y}{y}=
lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{arcsin y}{y}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074160%2ffinding-lim-x-rightarrow-1-frac-sqrt-pi-sqrt2-sin-1x-sqrt1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$lim_{xto1^-}dfrac{sqrtpi-sqrt{2sin^{-1}x}}{sqrt{1-x}}=lim_{xto1^-}dfrac1{sqrtpi+sqrt{2sin^{-1}x}}cdotlim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}$$
Using Why it's true? $arcsin(x) +arccos(x) = frac{pi}{2}$
$$F=lim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}=lim_{xto1^-}dfrac{2cos^{-1}x}{sqrt{1-x}}$$
Set $sqrt{1-x}=himplies x=1-h^2$
$$F=2lim_{hto0^+}dfrac{cos^{-1}(1-h^2)}h=2lim_{hto0^+}dfrac{sin^{-1}sqrt{1-(1-h^2)^2}}h$$
$$=2lim_{hto0^+}dfrac{sin^{-1}(hsqrt{2-h^2})}{hsqrt{2-h^2}}cdotlim_{hto0^+}sqrt{2-h^2}=?$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xto1^-}dfrac{sqrtpi-sqrt{2sin^{-1}x}}{sqrt{1-x}}=lim_{xto1^-}dfrac1{sqrtpi+sqrt{2sin^{-1}x}}cdotlim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}$$
Using Why it's true? $arcsin(x) +arccos(x) = frac{pi}{2}$
$$F=lim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}=lim_{xto1^-}dfrac{2cos^{-1}x}{sqrt{1-x}}$$
Set $sqrt{1-x}=himplies x=1-h^2$
$$F=2lim_{hto0^+}dfrac{cos^{-1}(1-h^2)}h=2lim_{hto0^+}dfrac{sin^{-1}sqrt{1-(1-h^2)^2}}h$$
$$=2lim_{hto0^+}dfrac{sin^{-1}(hsqrt{2-h^2})}{hsqrt{2-h^2}}cdotlim_{hto0^+}sqrt{2-h^2}=?$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xto1^-}dfrac{sqrtpi-sqrt{2sin^{-1}x}}{sqrt{1-x}}=lim_{xto1^-}dfrac1{sqrtpi+sqrt{2sin^{-1}x}}cdotlim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}$$
Using Why it's true? $arcsin(x) +arccos(x) = frac{pi}{2}$
$$F=lim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}=lim_{xto1^-}dfrac{2cos^{-1}x}{sqrt{1-x}}$$
Set $sqrt{1-x}=himplies x=1-h^2$
$$F=2lim_{hto0^+}dfrac{cos^{-1}(1-h^2)}h=2lim_{hto0^+}dfrac{sin^{-1}sqrt{1-(1-h^2)^2}}h$$
$$=2lim_{hto0^+}dfrac{sin^{-1}(hsqrt{2-h^2})}{hsqrt{2-h^2}}cdotlim_{hto0^+}sqrt{2-h^2}=?$$
$endgroup$
$$lim_{xto1^-}dfrac{sqrtpi-sqrt{2sin^{-1}x}}{sqrt{1-x}}=lim_{xto1^-}dfrac1{sqrtpi+sqrt{2sin^{-1}x}}cdotlim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}$$
Using Why it's true? $arcsin(x) +arccos(x) = frac{pi}{2}$
$$F=lim_{xto1^-}dfrac{pi-2sin^{-1}x}{sqrt{1-x}}=lim_{xto1^-}dfrac{2cos^{-1}x}{sqrt{1-x}}$$
Set $sqrt{1-x}=himplies x=1-h^2$
$$F=2lim_{hto0^+}dfrac{cos^{-1}(1-h^2)}h=2lim_{hto0^+}dfrac{sin^{-1}sqrt{1-(1-h^2)^2}}h$$
$$=2lim_{hto0^+}dfrac{sin^{-1}(hsqrt{2-h^2})}{hsqrt{2-h^2}}cdotlim_{hto0^+}sqrt{2-h^2}=?$$
answered Jan 15 at 7:51
lab bhattacharjeelab bhattacharjee
225k15157275
225k15157275
add a comment |
add a comment |
$begingroup$
If it is ok to use $lim_{uto 0}frac{sin u}{u} = 1$, then a possible way is setting $x=sin t$ and consider $tto frac{pi}{2}^-$:
begin{eqnarray*} frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}
& stackrel{x=sin t}{=} & frac{sqrt{pi}-sqrt{2t}}{sqrt{1-sin t}} \
& = & color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}cdot underbrace{sqrt{1+sin t}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{sqrt{2}}} \
end{eqnarray*}
begin{eqnarray*} color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}
& = & color{orange}{frac{pi-2t}{cos t}} cdot underbrace{frac{1}{sqrt{pi} + sqrt{2t}}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{frac{1}{2sqrt{pi}}}}\
end{eqnarray*}
begin{eqnarray*} color{orange}{frac{pi-2t}{cos t}}
& stackrel{t = u + frac{pi}{2}}{=} & underbrace{frac{-2u}{-sin u}}_{stackrel{u to 0^-}{longrightarrow}color{green}{2}}\
end{eqnarray*}
All together:
$$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}} = color{green}{sqrt{2}cdot frac{1}{2sqrt{pi}} cdot 2} = boxed{frac{sqrt{2}}{sqrt{pi}}}$$
$endgroup$
add a comment |
$begingroup$
If it is ok to use $lim_{uto 0}frac{sin u}{u} = 1$, then a possible way is setting $x=sin t$ and consider $tto frac{pi}{2}^-$:
begin{eqnarray*} frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}
& stackrel{x=sin t}{=} & frac{sqrt{pi}-sqrt{2t}}{sqrt{1-sin t}} \
& = & color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}cdot underbrace{sqrt{1+sin t}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{sqrt{2}}} \
end{eqnarray*}
begin{eqnarray*} color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}
& = & color{orange}{frac{pi-2t}{cos t}} cdot underbrace{frac{1}{sqrt{pi} + sqrt{2t}}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{frac{1}{2sqrt{pi}}}}\
end{eqnarray*}
begin{eqnarray*} color{orange}{frac{pi-2t}{cos t}}
& stackrel{t = u + frac{pi}{2}}{=} & underbrace{frac{-2u}{-sin u}}_{stackrel{u to 0^-}{longrightarrow}color{green}{2}}\
end{eqnarray*}
All together:
$$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}} = color{green}{sqrt{2}cdot frac{1}{2sqrt{pi}} cdot 2} = boxed{frac{sqrt{2}}{sqrt{pi}}}$$
$endgroup$
add a comment |
$begingroup$
If it is ok to use $lim_{uto 0}frac{sin u}{u} = 1$, then a possible way is setting $x=sin t$ and consider $tto frac{pi}{2}^-$:
begin{eqnarray*} frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}
& stackrel{x=sin t}{=} & frac{sqrt{pi}-sqrt{2t}}{sqrt{1-sin t}} \
& = & color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}cdot underbrace{sqrt{1+sin t}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{sqrt{2}}} \
end{eqnarray*}
begin{eqnarray*} color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}
& = & color{orange}{frac{pi-2t}{cos t}} cdot underbrace{frac{1}{sqrt{pi} + sqrt{2t}}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{frac{1}{2sqrt{pi}}}}\
end{eqnarray*}
begin{eqnarray*} color{orange}{frac{pi-2t}{cos t}}
& stackrel{t = u + frac{pi}{2}}{=} & underbrace{frac{-2u}{-sin u}}_{stackrel{u to 0^-}{longrightarrow}color{green}{2}}\
end{eqnarray*}
All together:
$$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}} = color{green}{sqrt{2}cdot frac{1}{2sqrt{pi}} cdot 2} = boxed{frac{sqrt{2}}{sqrt{pi}}}$$
$endgroup$
If it is ok to use $lim_{uto 0}frac{sin u}{u} = 1$, then a possible way is setting $x=sin t$ and consider $tto frac{pi}{2}^-$:
begin{eqnarray*} frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}}
& stackrel{x=sin t}{=} & frac{sqrt{pi}-sqrt{2t}}{sqrt{1-sin t}} \
& = & color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}cdot underbrace{sqrt{1+sin t}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{sqrt{2}}} \
end{eqnarray*}
begin{eqnarray*} color{blue}{frac{sqrt{pi}-sqrt{2t}}{cos t}}
& = & color{orange}{frac{pi-2t}{cos t}} cdot underbrace{frac{1}{sqrt{pi} + sqrt{2t}}}_{stackrel{t to frac{pi}{2}^-}{longrightarrow}color{green}{frac{1}{2sqrt{pi}}}}\
end{eqnarray*}
begin{eqnarray*} color{orange}{frac{pi-2t}{cos t}}
& stackrel{t = u + frac{pi}{2}}{=} & underbrace{frac{-2u}{-sin u}}_{stackrel{u to 0^-}{longrightarrow}color{green}{2}}\
end{eqnarray*}
All together:
$$lim_{xrightarrow 1^{-}}frac{sqrt{pi}-sqrt{2sin^{-1}(x)}}{sqrt{1-x}} = color{green}{sqrt{2}cdot frac{1}{2sqrt{pi}} cdot 2} = boxed{frac{sqrt{2}}{sqrt{pi}}}$$
answered Jan 15 at 8:30
trancelocationtrancelocation
10.8k1723
10.8k1723
add a comment |
add a comment |
$begingroup$
As you wrote $$y=frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$
Now, by Taylor series built at $h=0$
$$sin^{-1}(1-h)=frac{pi }{2}-sqrt{2} h^{1/2}-frac{h^{3/2}}{6 sqrt{2}}+Oleft(h^{5/2}right)$$
$$2sin^{-1}(1-h)=pi -2sqrt{2} h^{1/2}-frac{h^{3/2}}{3 sqrt{2}}+Oleft(h^{5/2}right)$$ Continuing with the binomial expansion
$$sqrt{2sin^{-1}(1-h) }=sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)$$ making
$$y=frac{sqrt{pi}-left(sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)right)}{sqrt{h}}=frac{sqrt{frac{2}{pi }} sqrt{h}+frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)}{sqrt{h}}$$ that is to say
$$y=sqrt{frac{2}{pi }} +frac{sqrt h}{pi
^{3/2}}+Oleft(hright)$$
$endgroup$
add a comment |
$begingroup$
As you wrote $$y=frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$
Now, by Taylor series built at $h=0$
$$sin^{-1}(1-h)=frac{pi }{2}-sqrt{2} h^{1/2}-frac{h^{3/2}}{6 sqrt{2}}+Oleft(h^{5/2}right)$$
$$2sin^{-1}(1-h)=pi -2sqrt{2} h^{1/2}-frac{h^{3/2}}{3 sqrt{2}}+Oleft(h^{5/2}right)$$ Continuing with the binomial expansion
$$sqrt{2sin^{-1}(1-h) }=sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)$$ making
$$y=frac{sqrt{pi}-left(sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)right)}{sqrt{h}}=frac{sqrt{frac{2}{pi }} sqrt{h}+frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)}{sqrt{h}}$$ that is to say
$$y=sqrt{frac{2}{pi }} +frac{sqrt h}{pi
^{3/2}}+Oleft(hright)$$
$endgroup$
add a comment |
$begingroup$
As you wrote $$y=frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$
Now, by Taylor series built at $h=0$
$$sin^{-1}(1-h)=frac{pi }{2}-sqrt{2} h^{1/2}-frac{h^{3/2}}{6 sqrt{2}}+Oleft(h^{5/2}right)$$
$$2sin^{-1}(1-h)=pi -2sqrt{2} h^{1/2}-frac{h^{3/2}}{3 sqrt{2}}+Oleft(h^{5/2}right)$$ Continuing with the binomial expansion
$$sqrt{2sin^{-1}(1-h) }=sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)$$ making
$$y=frac{sqrt{pi}-left(sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)right)}{sqrt{h}}=frac{sqrt{frac{2}{pi }} sqrt{h}+frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)}{sqrt{h}}$$ that is to say
$$y=sqrt{frac{2}{pi }} +frac{sqrt h}{pi
^{3/2}}+Oleft(hright)$$
$endgroup$
As you wrote $$y=frac{sqrt{pi}-sqrt{2sin^{-1}(1-h)}}{sqrt{h}}$$
Now, by Taylor series built at $h=0$
$$sin^{-1}(1-h)=frac{pi }{2}-sqrt{2} h^{1/2}-frac{h^{3/2}}{6 sqrt{2}}+Oleft(h^{5/2}right)$$
$$2sin^{-1}(1-h)=pi -2sqrt{2} h^{1/2}-frac{h^{3/2}}{3 sqrt{2}}+Oleft(h^{5/2}right)$$ Continuing with the binomial expansion
$$sqrt{2sin^{-1}(1-h) }=sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)$$ making
$$y=frac{sqrt{pi}-left(sqrt{pi }-sqrt{frac{2}{pi }} sqrt{h}-frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)right)}{sqrt{h}}=frac{sqrt{frac{2}{pi }} sqrt{h}+frac{h}{pi
^{3/2}}+Oleft(h^{3/2}right)}{sqrt{h}}$$ that is to say
$$y=sqrt{frac{2}{pi }} +frac{sqrt h}{pi
^{3/2}}+Oleft(hright)$$
answered Jan 15 at 8:37
Claude LeiboviciClaude Leibovici
121k1157133
121k1157133
add a comment |
add a comment |
$begingroup$
If you substitute $y=sqrt{1-x}$, then $x=1-y^2$ and the limit becomes
$$
lim_{yto0^+}frac{sqrt{pi}-sqrt{2arcsinsqrt{1-y^2}}}{y}
$$
Not a simplification? Let's see. If $theta=arcsinsqrt{1-y^2}$, then $sqrt{1-y^2}=sintheta$ and so $y=costheta$ and $theta=arccos y$.
Thus your limit is
$$
lim_{yto0^+}frac{sqrt{pi}-sqrt{2arccos y}}{y}=
lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{pi/2-arccos y}{y}=
lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{arcsin y}{y}$$
$endgroup$
add a comment |
$begingroup$
If you substitute $y=sqrt{1-x}$, then $x=1-y^2$ and the limit becomes
$$
lim_{yto0^+}frac{sqrt{pi}-sqrt{2arcsinsqrt{1-y^2}}}{y}
$$
Not a simplification? Let's see. If $theta=arcsinsqrt{1-y^2}$, then $sqrt{1-y^2}=sintheta$ and so $y=costheta$ and $theta=arccos y$.
Thus your limit is
$$
lim_{yto0^+}frac{sqrt{pi}-sqrt{2arccos y}}{y}=
lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{pi/2-arccos y}{y}=
lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{arcsin y}{y}$$
$endgroup$
add a comment |
$begingroup$
If you substitute $y=sqrt{1-x}$, then $x=1-y^2$ and the limit becomes
$$
lim_{yto0^+}frac{sqrt{pi}-sqrt{2arcsinsqrt{1-y^2}}}{y}
$$
Not a simplification? Let's see. If $theta=arcsinsqrt{1-y^2}$, then $sqrt{1-y^2}=sintheta$ and so $y=costheta$ and $theta=arccos y$.
Thus your limit is
$$
lim_{yto0^+}frac{sqrt{pi}-sqrt{2arccos y}}{y}=
lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{pi/2-arccos y}{y}=
lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{arcsin y}{y}$$
$endgroup$
If you substitute $y=sqrt{1-x}$, then $x=1-y^2$ and the limit becomes
$$
lim_{yto0^+}frac{sqrt{pi}-sqrt{2arcsinsqrt{1-y^2}}}{y}
$$
Not a simplification? Let's see. If $theta=arcsinsqrt{1-y^2}$, then $sqrt{1-y^2}=sintheta$ and so $y=costheta$ and $theta=arccos y$.
Thus your limit is
$$
lim_{yto0^+}frac{sqrt{pi}-sqrt{2arccos y}}{y}=
lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{pi/2-arccos y}{y}=
lim_{yto0^+}frac{2}{sqrt{pi}+sqrt{2arccos y}}frac{arcsin y}{y}$$
answered Jan 15 at 8:59
egregegreg
181k1485203
181k1485203
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074160%2ffinding-lim-x-rightarrow-1-frac-sqrt-pi-sqrt2-sin-1x-sqrt1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It's very tempting to try to make this into the definition of the derivative of $2sin^{-1}(x)$ (either by multiplying with $frac{sqrt{1-x}}{sqrt{1-x}}$ or by squaring the fraction), but personally, I can't make that happen without doing questionable limit manipulations.
$endgroup$
– Arthur
Jan 15 at 7:42