Right Riemann sum Error bound proof












1












$begingroup$


How do we prove the right Riemann sum error bound?
In wikipedia (https://en.wikipedia.org/wiki/Riemann_sum#Right_Riemann_sum) they have mentioned the following bound, but no proof.
$$left | int_a^bf(x)dx - A_{mbox{right}}right | leq frac{M_1(b-a)^2}{2n}$$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    How do we prove the right Riemann sum error bound?
    In wikipedia (https://en.wikipedia.org/wiki/Riemann_sum#Right_Riemann_sum) they have mentioned the following bound, but no proof.
    $$left | int_a^bf(x)dx - A_{mbox{right}}right | leq frac{M_1(b-a)^2}{2n}$$










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      How do we prove the right Riemann sum error bound?
      In wikipedia (https://en.wikipedia.org/wiki/Riemann_sum#Right_Riemann_sum) they have mentioned the following bound, but no proof.
      $$left | int_a^bf(x)dx - A_{mbox{right}}right | leq frac{M_1(b-a)^2}{2n}$$










      share|cite|improve this question











      $endgroup$




      How do we prove the right Riemann sum error bound?
      In wikipedia (https://en.wikipedia.org/wiki/Riemann_sum#Right_Riemann_sum) they have mentioned the following bound, but no proof.
      $$left | int_a^bf(x)dx - A_{mbox{right}}right | leq frac{M_1(b-a)^2}{2n}$$







      riemann-integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 15 at 9:57









      pedroth

      765




      765










      asked Jan 15 at 8:04









      jnxdjnxd

      63




      63






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          This could be an exercise when learning the definite integrals. Here is a demo.



          For convenience, suppose $f$ is differentiable on $[a,b]$. Let $x_j = a + j varDelta x$, where $varDelta x = (b-a)/n$, for $j =1,2,dots, n$. Then
          $$
          A _{text{right}} = sum_1^n f(x_j) varDelta x.
          $$

          Thus
          begin{align*}
          newcommandAbs[1]{leftvert #1 right vert}
          &quad Abs {-int_a^b f(x) ,mathrm dx + A_{text{right}}
          } \
          &= Abs {sum_1^n int_{x_{j-1}}^{x_j} (f(x_j) - f(x) ),mathrm dx
          } \
          &= Abs { sum_1^n int_{x_{j-1}}^{x_j} f'(eta_j) (x_j - x)mathrm dx
          }, tag{Lagrange's MVT}
          end{align*}

          where $eta_j in (x_{j-1}, x_j)$ for each $j$.



          Now use $-M_1 leqslant f' leqslant M_1$, and notice that $(x_j - x) geqslant 0$, we have
          $$
          -M_1 (x_j - x) leqslant f'(eta_j)(x_j -x) leqslant M_1 (x_j -x),
          $$

          hence
          $$
          -M_1 int_{x_{j-1}}^{x_j} (x_j - x) mathrm dx leqslant int_{x_{j-1}}^{x_j} f'(eta_j) (x_j - x)mathrm dx = int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx leqslant M_1 int_{x_{j-1}}^{x_j} (x_j - x) mathrm dx,
          $$

          i.e.
          $$
          Abs { int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx
          } leqslant M_1 int_{x_{j-1}}^{x_j} (x_j -x)mathrm dx = M_1 frac {(b-a)^2}{2n^2}.
          $$

          Therefore we have
          $$
          Abs {-int_a^b f(x) ,mathrm dx + A_{text{right}}
          } leqslant sum_1^n Abs { int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx
          } leqslant n cdot M_1 frac {(b-a)^2}{2n^2} = frac {M_1(b-a)^2}{2n}.
          $$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            This result is stated for a monotone function and uniformly spaced points. Assume first that $f$ is non-decreasing ( the proof for $f$ non-increasing is similar).



            With a uniform partition $x_j = a + jfrac{b-a}{n}$, we can apply the mean value theorem to obtain



            $$f(x_j) = f(x) + f'(xi_j(x))(x_j - x)$$



            where $xi_j(x)$ is between $x$ and $x_j$.



            Integrating and using $f' geqslant 0$, we get the local error bound



            $$f(x_j)(x_j - x_{j-1}) - int_{x_{j-1}}^{x_j} f(x) , dx = int_{x_{j-1}}^{x_j} f'(xi_j(x))(x_j - x) , dx leqslant M frac{(x_j - x_{j-1})^2}{2} = M frac{(b-a)^2}{2n^2}$$



            and the global error bound is



            $$sum_{j=1}^nf(x_j)(x_j - x_{j-1}) - int_{a}^{b} f(x) , dx = sum_{j=1}^nf(x_j)(x_j - x_{j-1}) - sum_{j=1}^nint_{x_{j-1}}^{x_j} f(x) , dx \ leqslant sum_{j=1}^n M frac{(b-a)^2}{2n^2} = M frac{(b-a)^2}{2n} $$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks for the explanation. One doubt though, in the taylor linear approximation of f(xj) whats the domain of x?
              $endgroup$
              – jnxd
              Jan 21 at 23:24












            • $begingroup$
              I might be less confusing if I refer to the justification as the mean value theorem -- which is exact for any $x, x_j in [a,b]$ assuming $f$ is differentiable in $[a,b]$. I'm sure you know that $f(x) - f(y) = f'(c)(x-y)$ where $c$ is between $x$ and $y$.
              $endgroup$
              – RRL
              Jan 22 at 0:36












            • $begingroup$
              Thanks again. Seeing it as MVT helped me understand it better.
              $endgroup$
              – jnxd
              Jan 22 at 21:49











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074180%2fright-riemann-sum-error-bound-proof%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            This could be an exercise when learning the definite integrals. Here is a demo.



            For convenience, suppose $f$ is differentiable on $[a,b]$. Let $x_j = a + j varDelta x$, where $varDelta x = (b-a)/n$, for $j =1,2,dots, n$. Then
            $$
            A _{text{right}} = sum_1^n f(x_j) varDelta x.
            $$

            Thus
            begin{align*}
            newcommandAbs[1]{leftvert #1 right vert}
            &quad Abs {-int_a^b f(x) ,mathrm dx + A_{text{right}}
            } \
            &= Abs {sum_1^n int_{x_{j-1}}^{x_j} (f(x_j) - f(x) ),mathrm dx
            } \
            &= Abs { sum_1^n int_{x_{j-1}}^{x_j} f'(eta_j) (x_j - x)mathrm dx
            }, tag{Lagrange's MVT}
            end{align*}

            where $eta_j in (x_{j-1}, x_j)$ for each $j$.



            Now use $-M_1 leqslant f' leqslant M_1$, and notice that $(x_j - x) geqslant 0$, we have
            $$
            -M_1 (x_j - x) leqslant f'(eta_j)(x_j -x) leqslant M_1 (x_j -x),
            $$

            hence
            $$
            -M_1 int_{x_{j-1}}^{x_j} (x_j - x) mathrm dx leqslant int_{x_{j-1}}^{x_j} f'(eta_j) (x_j - x)mathrm dx = int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx leqslant M_1 int_{x_{j-1}}^{x_j} (x_j - x) mathrm dx,
            $$

            i.e.
            $$
            Abs { int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx
            } leqslant M_1 int_{x_{j-1}}^{x_j} (x_j -x)mathrm dx = M_1 frac {(b-a)^2}{2n^2}.
            $$

            Therefore we have
            $$
            Abs {-int_a^b f(x) ,mathrm dx + A_{text{right}}
            } leqslant sum_1^n Abs { int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx
            } leqslant n cdot M_1 frac {(b-a)^2}{2n^2} = frac {M_1(b-a)^2}{2n}.
            $$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              This could be an exercise when learning the definite integrals. Here is a demo.



              For convenience, suppose $f$ is differentiable on $[a,b]$. Let $x_j = a + j varDelta x$, where $varDelta x = (b-a)/n$, for $j =1,2,dots, n$. Then
              $$
              A _{text{right}} = sum_1^n f(x_j) varDelta x.
              $$

              Thus
              begin{align*}
              newcommandAbs[1]{leftvert #1 right vert}
              &quad Abs {-int_a^b f(x) ,mathrm dx + A_{text{right}}
              } \
              &= Abs {sum_1^n int_{x_{j-1}}^{x_j} (f(x_j) - f(x) ),mathrm dx
              } \
              &= Abs { sum_1^n int_{x_{j-1}}^{x_j} f'(eta_j) (x_j - x)mathrm dx
              }, tag{Lagrange's MVT}
              end{align*}

              where $eta_j in (x_{j-1}, x_j)$ for each $j$.



              Now use $-M_1 leqslant f' leqslant M_1$, and notice that $(x_j - x) geqslant 0$, we have
              $$
              -M_1 (x_j - x) leqslant f'(eta_j)(x_j -x) leqslant M_1 (x_j -x),
              $$

              hence
              $$
              -M_1 int_{x_{j-1}}^{x_j} (x_j - x) mathrm dx leqslant int_{x_{j-1}}^{x_j} f'(eta_j) (x_j - x)mathrm dx = int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx leqslant M_1 int_{x_{j-1}}^{x_j} (x_j - x) mathrm dx,
              $$

              i.e.
              $$
              Abs { int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx
              } leqslant M_1 int_{x_{j-1}}^{x_j} (x_j -x)mathrm dx = M_1 frac {(b-a)^2}{2n^2}.
              $$

              Therefore we have
              $$
              Abs {-int_a^b f(x) ,mathrm dx + A_{text{right}}
              } leqslant sum_1^n Abs { int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx
              } leqslant n cdot M_1 frac {(b-a)^2}{2n^2} = frac {M_1(b-a)^2}{2n}.
              $$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                This could be an exercise when learning the definite integrals. Here is a demo.



                For convenience, suppose $f$ is differentiable on $[a,b]$. Let $x_j = a + j varDelta x$, where $varDelta x = (b-a)/n$, for $j =1,2,dots, n$. Then
                $$
                A _{text{right}} = sum_1^n f(x_j) varDelta x.
                $$

                Thus
                begin{align*}
                newcommandAbs[1]{leftvert #1 right vert}
                &quad Abs {-int_a^b f(x) ,mathrm dx + A_{text{right}}
                } \
                &= Abs {sum_1^n int_{x_{j-1}}^{x_j} (f(x_j) - f(x) ),mathrm dx
                } \
                &= Abs { sum_1^n int_{x_{j-1}}^{x_j} f'(eta_j) (x_j - x)mathrm dx
                }, tag{Lagrange's MVT}
                end{align*}

                where $eta_j in (x_{j-1}, x_j)$ for each $j$.



                Now use $-M_1 leqslant f' leqslant M_1$, and notice that $(x_j - x) geqslant 0$, we have
                $$
                -M_1 (x_j - x) leqslant f'(eta_j)(x_j -x) leqslant M_1 (x_j -x),
                $$

                hence
                $$
                -M_1 int_{x_{j-1}}^{x_j} (x_j - x) mathrm dx leqslant int_{x_{j-1}}^{x_j} f'(eta_j) (x_j - x)mathrm dx = int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx leqslant M_1 int_{x_{j-1}}^{x_j} (x_j - x) mathrm dx,
                $$

                i.e.
                $$
                Abs { int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx
                } leqslant M_1 int_{x_{j-1}}^{x_j} (x_j -x)mathrm dx = M_1 frac {(b-a)^2}{2n^2}.
                $$

                Therefore we have
                $$
                Abs {-int_a^b f(x) ,mathrm dx + A_{text{right}}
                } leqslant sum_1^n Abs { int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx
                } leqslant n cdot M_1 frac {(b-a)^2}{2n^2} = frac {M_1(b-a)^2}{2n}.
                $$






                share|cite|improve this answer









                $endgroup$



                This could be an exercise when learning the definite integrals. Here is a demo.



                For convenience, suppose $f$ is differentiable on $[a,b]$. Let $x_j = a + j varDelta x$, where $varDelta x = (b-a)/n$, for $j =1,2,dots, n$. Then
                $$
                A _{text{right}} = sum_1^n f(x_j) varDelta x.
                $$

                Thus
                begin{align*}
                newcommandAbs[1]{leftvert #1 right vert}
                &quad Abs {-int_a^b f(x) ,mathrm dx + A_{text{right}}
                } \
                &= Abs {sum_1^n int_{x_{j-1}}^{x_j} (f(x_j) - f(x) ),mathrm dx
                } \
                &= Abs { sum_1^n int_{x_{j-1}}^{x_j} f'(eta_j) (x_j - x)mathrm dx
                }, tag{Lagrange's MVT}
                end{align*}

                where $eta_j in (x_{j-1}, x_j)$ for each $j$.



                Now use $-M_1 leqslant f' leqslant M_1$, and notice that $(x_j - x) geqslant 0$, we have
                $$
                -M_1 (x_j - x) leqslant f'(eta_j)(x_j -x) leqslant M_1 (x_j -x),
                $$

                hence
                $$
                -M_1 int_{x_{j-1}}^{x_j} (x_j - x) mathrm dx leqslant int_{x_{j-1}}^{x_j} f'(eta_j) (x_j - x)mathrm dx = int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx leqslant M_1 int_{x_{j-1}}^{x_j} (x_j - x) mathrm dx,
                $$

                i.e.
                $$
                Abs { int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx
                } leqslant M_1 int_{x_{j-1}}^{x_j} (x_j -x)mathrm dx = M_1 frac {(b-a)^2}{2n^2}.
                $$

                Therefore we have
                $$
                Abs {-int_a^b f(x) ,mathrm dx + A_{text{right}}
                } leqslant sum_1^n Abs { int_{x_{j-1}}^{x_j} (f(x_j) - f(x))mathrm dx
                } leqslant n cdot M_1 frac {(b-a)^2}{2n^2} = frac {M_1(b-a)^2}{2n}.
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 15 at 10:00









                xbhxbh

                6,1251522




                6,1251522























                    1












                    $begingroup$

                    This result is stated for a monotone function and uniformly spaced points. Assume first that $f$ is non-decreasing ( the proof for $f$ non-increasing is similar).



                    With a uniform partition $x_j = a + jfrac{b-a}{n}$, we can apply the mean value theorem to obtain



                    $$f(x_j) = f(x) + f'(xi_j(x))(x_j - x)$$



                    where $xi_j(x)$ is between $x$ and $x_j$.



                    Integrating and using $f' geqslant 0$, we get the local error bound



                    $$f(x_j)(x_j - x_{j-1}) - int_{x_{j-1}}^{x_j} f(x) , dx = int_{x_{j-1}}^{x_j} f'(xi_j(x))(x_j - x) , dx leqslant M frac{(x_j - x_{j-1})^2}{2} = M frac{(b-a)^2}{2n^2}$$



                    and the global error bound is



                    $$sum_{j=1}^nf(x_j)(x_j - x_{j-1}) - int_{a}^{b} f(x) , dx = sum_{j=1}^nf(x_j)(x_j - x_{j-1}) - sum_{j=1}^nint_{x_{j-1}}^{x_j} f(x) , dx \ leqslant sum_{j=1}^n M frac{(b-a)^2}{2n^2} = M frac{(b-a)^2}{2n} $$






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      Thanks for the explanation. One doubt though, in the taylor linear approximation of f(xj) whats the domain of x?
                      $endgroup$
                      – jnxd
                      Jan 21 at 23:24












                    • $begingroup$
                      I might be less confusing if I refer to the justification as the mean value theorem -- which is exact for any $x, x_j in [a,b]$ assuming $f$ is differentiable in $[a,b]$. I'm sure you know that $f(x) - f(y) = f'(c)(x-y)$ where $c$ is between $x$ and $y$.
                      $endgroup$
                      – RRL
                      Jan 22 at 0:36












                    • $begingroup$
                      Thanks again. Seeing it as MVT helped me understand it better.
                      $endgroup$
                      – jnxd
                      Jan 22 at 21:49
















                    1












                    $begingroup$

                    This result is stated for a monotone function and uniformly spaced points. Assume first that $f$ is non-decreasing ( the proof for $f$ non-increasing is similar).



                    With a uniform partition $x_j = a + jfrac{b-a}{n}$, we can apply the mean value theorem to obtain



                    $$f(x_j) = f(x) + f'(xi_j(x))(x_j - x)$$



                    where $xi_j(x)$ is between $x$ and $x_j$.



                    Integrating and using $f' geqslant 0$, we get the local error bound



                    $$f(x_j)(x_j - x_{j-1}) - int_{x_{j-1}}^{x_j} f(x) , dx = int_{x_{j-1}}^{x_j} f'(xi_j(x))(x_j - x) , dx leqslant M frac{(x_j - x_{j-1})^2}{2} = M frac{(b-a)^2}{2n^2}$$



                    and the global error bound is



                    $$sum_{j=1}^nf(x_j)(x_j - x_{j-1}) - int_{a}^{b} f(x) , dx = sum_{j=1}^nf(x_j)(x_j - x_{j-1}) - sum_{j=1}^nint_{x_{j-1}}^{x_j} f(x) , dx \ leqslant sum_{j=1}^n M frac{(b-a)^2}{2n^2} = M frac{(b-a)^2}{2n} $$






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      Thanks for the explanation. One doubt though, in the taylor linear approximation of f(xj) whats the domain of x?
                      $endgroup$
                      – jnxd
                      Jan 21 at 23:24












                    • $begingroup$
                      I might be less confusing if I refer to the justification as the mean value theorem -- which is exact for any $x, x_j in [a,b]$ assuming $f$ is differentiable in $[a,b]$. I'm sure you know that $f(x) - f(y) = f'(c)(x-y)$ where $c$ is between $x$ and $y$.
                      $endgroup$
                      – RRL
                      Jan 22 at 0:36












                    • $begingroup$
                      Thanks again. Seeing it as MVT helped me understand it better.
                      $endgroup$
                      – jnxd
                      Jan 22 at 21:49














                    1












                    1








                    1





                    $begingroup$

                    This result is stated for a monotone function and uniformly spaced points. Assume first that $f$ is non-decreasing ( the proof for $f$ non-increasing is similar).



                    With a uniform partition $x_j = a + jfrac{b-a}{n}$, we can apply the mean value theorem to obtain



                    $$f(x_j) = f(x) + f'(xi_j(x))(x_j - x)$$



                    where $xi_j(x)$ is between $x$ and $x_j$.



                    Integrating and using $f' geqslant 0$, we get the local error bound



                    $$f(x_j)(x_j - x_{j-1}) - int_{x_{j-1}}^{x_j} f(x) , dx = int_{x_{j-1}}^{x_j} f'(xi_j(x))(x_j - x) , dx leqslant M frac{(x_j - x_{j-1})^2}{2} = M frac{(b-a)^2}{2n^2}$$



                    and the global error bound is



                    $$sum_{j=1}^nf(x_j)(x_j - x_{j-1}) - int_{a}^{b} f(x) , dx = sum_{j=1}^nf(x_j)(x_j - x_{j-1}) - sum_{j=1}^nint_{x_{j-1}}^{x_j} f(x) , dx \ leqslant sum_{j=1}^n M frac{(b-a)^2}{2n^2} = M frac{(b-a)^2}{2n} $$






                    share|cite|improve this answer











                    $endgroup$



                    This result is stated for a monotone function and uniformly spaced points. Assume first that $f$ is non-decreasing ( the proof for $f$ non-increasing is similar).



                    With a uniform partition $x_j = a + jfrac{b-a}{n}$, we can apply the mean value theorem to obtain



                    $$f(x_j) = f(x) + f'(xi_j(x))(x_j - x)$$



                    where $xi_j(x)$ is between $x$ and $x_j$.



                    Integrating and using $f' geqslant 0$, we get the local error bound



                    $$f(x_j)(x_j - x_{j-1}) - int_{x_{j-1}}^{x_j} f(x) , dx = int_{x_{j-1}}^{x_j} f'(xi_j(x))(x_j - x) , dx leqslant M frac{(x_j - x_{j-1})^2}{2} = M frac{(b-a)^2}{2n^2}$$



                    and the global error bound is



                    $$sum_{j=1}^nf(x_j)(x_j - x_{j-1}) - int_{a}^{b} f(x) , dx = sum_{j=1}^nf(x_j)(x_j - x_{j-1}) - sum_{j=1}^nint_{x_{j-1}}^{x_j} f(x) , dx \ leqslant sum_{j=1}^n M frac{(b-a)^2}{2n^2} = M frac{(b-a)^2}{2n} $$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jan 22 at 0:37

























                    answered Jan 15 at 8:48









                    RRLRRL

                    50.8k42573




                    50.8k42573












                    • $begingroup$
                      Thanks for the explanation. One doubt though, in the taylor linear approximation of f(xj) whats the domain of x?
                      $endgroup$
                      – jnxd
                      Jan 21 at 23:24












                    • $begingroup$
                      I might be less confusing if I refer to the justification as the mean value theorem -- which is exact for any $x, x_j in [a,b]$ assuming $f$ is differentiable in $[a,b]$. I'm sure you know that $f(x) - f(y) = f'(c)(x-y)$ where $c$ is between $x$ and $y$.
                      $endgroup$
                      – RRL
                      Jan 22 at 0:36












                    • $begingroup$
                      Thanks again. Seeing it as MVT helped me understand it better.
                      $endgroup$
                      – jnxd
                      Jan 22 at 21:49


















                    • $begingroup$
                      Thanks for the explanation. One doubt though, in the taylor linear approximation of f(xj) whats the domain of x?
                      $endgroup$
                      – jnxd
                      Jan 21 at 23:24












                    • $begingroup$
                      I might be less confusing if I refer to the justification as the mean value theorem -- which is exact for any $x, x_j in [a,b]$ assuming $f$ is differentiable in $[a,b]$. I'm sure you know that $f(x) - f(y) = f'(c)(x-y)$ where $c$ is between $x$ and $y$.
                      $endgroup$
                      – RRL
                      Jan 22 at 0:36












                    • $begingroup$
                      Thanks again. Seeing it as MVT helped me understand it better.
                      $endgroup$
                      – jnxd
                      Jan 22 at 21:49
















                    $begingroup$
                    Thanks for the explanation. One doubt though, in the taylor linear approximation of f(xj) whats the domain of x?
                    $endgroup$
                    – jnxd
                    Jan 21 at 23:24






                    $begingroup$
                    Thanks for the explanation. One doubt though, in the taylor linear approximation of f(xj) whats the domain of x?
                    $endgroup$
                    – jnxd
                    Jan 21 at 23:24














                    $begingroup$
                    I might be less confusing if I refer to the justification as the mean value theorem -- which is exact for any $x, x_j in [a,b]$ assuming $f$ is differentiable in $[a,b]$. I'm sure you know that $f(x) - f(y) = f'(c)(x-y)$ where $c$ is between $x$ and $y$.
                    $endgroup$
                    – RRL
                    Jan 22 at 0:36






                    $begingroup$
                    I might be less confusing if I refer to the justification as the mean value theorem -- which is exact for any $x, x_j in [a,b]$ assuming $f$ is differentiable in $[a,b]$. I'm sure you know that $f(x) - f(y) = f'(c)(x-y)$ where $c$ is between $x$ and $y$.
                    $endgroup$
                    – RRL
                    Jan 22 at 0:36














                    $begingroup$
                    Thanks again. Seeing it as MVT helped me understand it better.
                    $endgroup$
                    – jnxd
                    Jan 22 at 21:49




                    $begingroup$
                    Thanks again. Seeing it as MVT helped me understand it better.
                    $endgroup$
                    – jnxd
                    Jan 22 at 21:49


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074180%2fright-riemann-sum-error-bound-proof%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    The Binding of Isaac: Rebirth/Afterbirth

                    Mario Kart Wii

                    Dobbiaco