Showing $text{cov} (x_d-x_c, x_b-x_a)=0$
$begingroup$
Suppose that $(x_k, mathcal{D}_k), k=1,...,n,$ is a martingale define on finite probability space. Show that $$text{cov} (x_d-x_c, x_b-x_a)=0$$ for arbitrary integers $a<b<c<d$.
How can I show it? Do I need to show that $x_d-x_c, x_b-x_a$ are independent? If yes, than how can I do it?
I know that $text{cov}(X,Y)=mathbb{E}(X-mathbb{E}X)(Y-mathbb{E}Y)=mathbb{E}XY-mathbb{E}Xmathbb{E}Y$ so when $mathbb{E}XY=mathbb{E}Xmathbb{E}Y$ than $text{cov}(X,Y)=0$
probability probability-theory random-variables martingales covariance
$endgroup$
add a comment |
$begingroup$
Suppose that $(x_k, mathcal{D}_k), k=1,...,n,$ is a martingale define on finite probability space. Show that $$text{cov} (x_d-x_c, x_b-x_a)=0$$ for arbitrary integers $a<b<c<d$.
How can I show it? Do I need to show that $x_d-x_c, x_b-x_a$ are independent? If yes, than how can I do it?
I know that $text{cov}(X,Y)=mathbb{E}(X-mathbb{E}X)(Y-mathbb{E}Y)=mathbb{E}XY-mathbb{E}Xmathbb{E}Y$ so when $mathbb{E}XY=mathbb{E}Xmathbb{E}Y$ than $text{cov}(X,Y)=0$
probability probability-theory random-variables martingales covariance
$endgroup$
$begingroup$
Take e.g. a look at this question (....and no, the increments are in general not independent).
$endgroup$
– saz
Jan 15 at 17:58
add a comment |
$begingroup$
Suppose that $(x_k, mathcal{D}_k), k=1,...,n,$ is a martingale define on finite probability space. Show that $$text{cov} (x_d-x_c, x_b-x_a)=0$$ for arbitrary integers $a<b<c<d$.
How can I show it? Do I need to show that $x_d-x_c, x_b-x_a$ are independent? If yes, than how can I do it?
I know that $text{cov}(X,Y)=mathbb{E}(X-mathbb{E}X)(Y-mathbb{E}Y)=mathbb{E}XY-mathbb{E}Xmathbb{E}Y$ so when $mathbb{E}XY=mathbb{E}Xmathbb{E}Y$ than $text{cov}(X,Y)=0$
probability probability-theory random-variables martingales covariance
$endgroup$
Suppose that $(x_k, mathcal{D}_k), k=1,...,n,$ is a martingale define on finite probability space. Show that $$text{cov} (x_d-x_c, x_b-x_a)=0$$ for arbitrary integers $a<b<c<d$.
How can I show it? Do I need to show that $x_d-x_c, x_b-x_a$ are independent? If yes, than how can I do it?
I know that $text{cov}(X,Y)=mathbb{E}(X-mathbb{E}X)(Y-mathbb{E}Y)=mathbb{E}XY-mathbb{E}Xmathbb{E}Y$ so when $mathbb{E}XY=mathbb{E}Xmathbb{E}Y$ than $text{cov}(X,Y)=0$
probability probability-theory random-variables martingales covariance
probability probability-theory random-variables martingales covariance
asked Jan 15 at 16:24
AtstovasAtstovas
1089
1089
$begingroup$
Take e.g. a look at this question (....and no, the increments are in general not independent).
$endgroup$
– saz
Jan 15 at 17:58
add a comment |
$begingroup$
Take e.g. a look at this question (....and no, the increments are in general not independent).
$endgroup$
– saz
Jan 15 at 17:58
$begingroup$
Take e.g. a look at this question (....and no, the increments are in general not independent).
$endgroup$
– saz
Jan 15 at 17:58
$begingroup$
Take e.g. a look at this question (....and no, the increments are in general not independent).
$endgroup$
– saz
Jan 15 at 17:58
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074615%2fshowing-textcov-x-d-x-c-x-b-x-a-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074615%2fshowing-textcov-x-d-x-c-x-b-x-a-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Take e.g. a look at this question (....and no, the increments are in general not independent).
$endgroup$
– saz
Jan 15 at 17:58