Find the limit $lim_{ntoinfty}frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}$ given $x_n ne 1$ and $lim x_n =...
$begingroup$
Let $x_n$ denote a sequence, $ninBbb N$. Evaluate the limit:
$$
lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}, kinBbb N
$$
given
$$
lim_{ntoinfty} x_n = 1 \
x_n ne 1
$$
I'm interested in verifying the following results. Denote:
$$
y_n = frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}
$$
After some trials long division seem to produce a pattern here. Not sure how to put it here in a fancy way, so I will post the result only. It appears that:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k
$$
It is given that $lim x_n = 1$ therefore we may use the following properties:
$$
lim(a_n + b_n) = lim a_n + lim b_n\
lim(a_n cdot b_n) = lim a_n cdot lim b_n
$$
In particular:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k\
lim_{ntoinfty}y_n =lim_{ntoinfty}left(x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + kright)
$$
Then since $lim x_n = 1$ and by the sum of first $k$ integers:
$$
lim_{ntoinfty} y_n = frac{k(k+1)}{2}
$$
Could you please verify whether the reasoning above is correct or not and point to the mistakes in case of any? Thank you!
calculus sequences-and-series limits proof-verification
$endgroup$
add a comment |
$begingroup$
Let $x_n$ denote a sequence, $ninBbb N$. Evaluate the limit:
$$
lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}, kinBbb N
$$
given
$$
lim_{ntoinfty} x_n = 1 \
x_n ne 1
$$
I'm interested in verifying the following results. Denote:
$$
y_n = frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}
$$
After some trials long division seem to produce a pattern here. Not sure how to put it here in a fancy way, so I will post the result only. It appears that:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k
$$
It is given that $lim x_n = 1$ therefore we may use the following properties:
$$
lim(a_n + b_n) = lim a_n + lim b_n\
lim(a_n cdot b_n) = lim a_n cdot lim b_n
$$
In particular:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k\
lim_{ntoinfty}y_n =lim_{ntoinfty}left(x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + kright)
$$
Then since $lim x_n = 1$ and by the sum of first $k$ integers:
$$
lim_{ntoinfty} y_n = frac{k(k+1)}{2}
$$
Could you please verify whether the reasoning above is correct or not and point to the mistakes in case of any? Thank you!
calculus sequences-and-series limits proof-verification
$endgroup$
$begingroup$
Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
$endgroup$
– Crostul
Jan 15 at 16:05
$begingroup$
Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
$endgroup$
– Keen-ameteur
Jan 15 at 16:11
$begingroup$
@Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
$endgroup$
– roman
Jan 15 at 16:13
$begingroup$
Okay, then nevermind.
$endgroup$
– Keen-ameteur
Jan 15 at 16:14
add a comment |
$begingroup$
Let $x_n$ denote a sequence, $ninBbb N$. Evaluate the limit:
$$
lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}, kinBbb N
$$
given
$$
lim_{ntoinfty} x_n = 1 \
x_n ne 1
$$
I'm interested in verifying the following results. Denote:
$$
y_n = frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}
$$
After some trials long division seem to produce a pattern here. Not sure how to put it here in a fancy way, so I will post the result only. It appears that:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k
$$
It is given that $lim x_n = 1$ therefore we may use the following properties:
$$
lim(a_n + b_n) = lim a_n + lim b_n\
lim(a_n cdot b_n) = lim a_n cdot lim b_n
$$
In particular:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k\
lim_{ntoinfty}y_n =lim_{ntoinfty}left(x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + kright)
$$
Then since $lim x_n = 1$ and by the sum of first $k$ integers:
$$
lim_{ntoinfty} y_n = frac{k(k+1)}{2}
$$
Could you please verify whether the reasoning above is correct or not and point to the mistakes in case of any? Thank you!
calculus sequences-and-series limits proof-verification
$endgroup$
Let $x_n$ denote a sequence, $ninBbb N$. Evaluate the limit:
$$
lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}, kinBbb N
$$
given
$$
lim_{ntoinfty} x_n = 1 \
x_n ne 1
$$
I'm interested in verifying the following results. Denote:
$$
y_n = frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}
$$
After some trials long division seem to produce a pattern here. Not sure how to put it here in a fancy way, so I will post the result only. It appears that:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k
$$
It is given that $lim x_n = 1$ therefore we may use the following properties:
$$
lim(a_n + b_n) = lim a_n + lim b_n\
lim(a_n cdot b_n) = lim a_n cdot lim b_n
$$
In particular:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k\
lim_{ntoinfty}y_n =lim_{ntoinfty}left(x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + kright)
$$
Then since $lim x_n = 1$ and by the sum of first $k$ integers:
$$
lim_{ntoinfty} y_n = frac{k(k+1)}{2}
$$
Could you please verify whether the reasoning above is correct or not and point to the mistakes in case of any? Thank you!
calculus sequences-and-series limits proof-verification
calculus sequences-and-series limits proof-verification
edited Jan 15 at 15:56
roman
asked Jan 15 at 15:50
romanroman
2,17321224
2,17321224
$begingroup$
Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
$endgroup$
– Crostul
Jan 15 at 16:05
$begingroup$
Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
$endgroup$
– Keen-ameteur
Jan 15 at 16:11
$begingroup$
@Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
$endgroup$
– roman
Jan 15 at 16:13
$begingroup$
Okay, then nevermind.
$endgroup$
– Keen-ameteur
Jan 15 at 16:14
add a comment |
$begingroup$
Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
$endgroup$
– Crostul
Jan 15 at 16:05
$begingroup$
Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
$endgroup$
– Keen-ameteur
Jan 15 at 16:11
$begingroup$
@Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
$endgroup$
– roman
Jan 15 at 16:13
$begingroup$
Okay, then nevermind.
$endgroup$
– Keen-ameteur
Jan 15 at 16:14
$begingroup$
Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
$endgroup$
– Crostul
Jan 15 at 16:05
$begingroup$
Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
$endgroup$
– Crostul
Jan 15 at 16:05
$begingroup$
Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
$endgroup$
– Keen-ameteur
Jan 15 at 16:11
$begingroup$
Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
$endgroup$
– Keen-ameteur
Jan 15 at 16:11
$begingroup$
@Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
$endgroup$
– roman
Jan 15 at 16:13
$begingroup$
@Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
$endgroup$
– roman
Jan 15 at 16:13
$begingroup$
Okay, then nevermind.
$endgroup$
– Keen-ameteur
Jan 15 at 16:14
$begingroup$
Okay, then nevermind.
$endgroup$
– Keen-ameteur
Jan 15 at 16:14
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Rewrite the limit as
$$ sum_{j=1}^k lim_{n to infty} {x_n^j - 1 over x_n - 1} $$
(note that this is a sum of finitely many terms).
Now we can do the division to get
$$ sum_{j=1}^k lim_{n to infty} (1 + x_n + x_n^2 + cdots + x_n^{j-1}) $$
and the limit can be written as a sum of (again, finitely many!) limits. This gives
$$ sum_{j=1}^k sum_{i=0}^{j-1} lim_{n to infty} x_n^i $$
Finally the innermost limit is, for each $n$ and $i$, equal to $(lim_{n to infty} x_n)^i = 1^i = 1$ so this is just
$$ sum_{j=1}^k sum_{i=0}^{j-1} 1 = sum_{j=1}^k j = {k(k+1) over 2}$$
as desired.
$endgroup$
$begingroup$
That one is a nice approach
$endgroup$
– roman
Jan 15 at 16:16
add a comment |
$begingroup$
Let $y_n=x_n-1$ and then $lim_{ntoinfty}y_n=1$. Note
begin{eqnarray*}
&&frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n-1}\
&=&frac{(y_n+1)^{k+1}-(k+1)(y_n+1)+k}{y_n^2}\
&=&frac{sum_{i=0}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n-1}{y_n^2}\
&=&frac{sum_{i=2}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n}{y_n^2}\
&=&sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
end{eqnarray*}
and hence
begin{eqnarray*}
&&lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}\
&=&lim_{ntoinfty}sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
&=&binom{k+1}{2}=frac12k(k+1).
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
This could be realized as a derivative. Let us define
$$f(x)=x^1+x^2+cdots+x^k,.$$
Then
$$lim_{xrightarrow 1}frac{f(x)-f(1)}{x-1}=f'(1)=1+2cdot 1^1+cdots+kcdot 1^{k-1}=frac{k(k+1)}{2},.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074572%2ffind-the-limit-lim-n-to-infty-fracx-n-x-n2-cdots-x-nk-kx-n-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Rewrite the limit as
$$ sum_{j=1}^k lim_{n to infty} {x_n^j - 1 over x_n - 1} $$
(note that this is a sum of finitely many terms).
Now we can do the division to get
$$ sum_{j=1}^k lim_{n to infty} (1 + x_n + x_n^2 + cdots + x_n^{j-1}) $$
and the limit can be written as a sum of (again, finitely many!) limits. This gives
$$ sum_{j=1}^k sum_{i=0}^{j-1} lim_{n to infty} x_n^i $$
Finally the innermost limit is, for each $n$ and $i$, equal to $(lim_{n to infty} x_n)^i = 1^i = 1$ so this is just
$$ sum_{j=1}^k sum_{i=0}^{j-1} 1 = sum_{j=1}^k j = {k(k+1) over 2}$$
as desired.
$endgroup$
$begingroup$
That one is a nice approach
$endgroup$
– roman
Jan 15 at 16:16
add a comment |
$begingroup$
Rewrite the limit as
$$ sum_{j=1}^k lim_{n to infty} {x_n^j - 1 over x_n - 1} $$
(note that this is a sum of finitely many terms).
Now we can do the division to get
$$ sum_{j=1}^k lim_{n to infty} (1 + x_n + x_n^2 + cdots + x_n^{j-1}) $$
and the limit can be written as a sum of (again, finitely many!) limits. This gives
$$ sum_{j=1}^k sum_{i=0}^{j-1} lim_{n to infty} x_n^i $$
Finally the innermost limit is, for each $n$ and $i$, equal to $(lim_{n to infty} x_n)^i = 1^i = 1$ so this is just
$$ sum_{j=1}^k sum_{i=0}^{j-1} 1 = sum_{j=1}^k j = {k(k+1) over 2}$$
as desired.
$endgroup$
$begingroup$
That one is a nice approach
$endgroup$
– roman
Jan 15 at 16:16
add a comment |
$begingroup$
Rewrite the limit as
$$ sum_{j=1}^k lim_{n to infty} {x_n^j - 1 over x_n - 1} $$
(note that this is a sum of finitely many terms).
Now we can do the division to get
$$ sum_{j=1}^k lim_{n to infty} (1 + x_n + x_n^2 + cdots + x_n^{j-1}) $$
and the limit can be written as a sum of (again, finitely many!) limits. This gives
$$ sum_{j=1}^k sum_{i=0}^{j-1} lim_{n to infty} x_n^i $$
Finally the innermost limit is, for each $n$ and $i$, equal to $(lim_{n to infty} x_n)^i = 1^i = 1$ so this is just
$$ sum_{j=1}^k sum_{i=0}^{j-1} 1 = sum_{j=1}^k j = {k(k+1) over 2}$$
as desired.
$endgroup$
Rewrite the limit as
$$ sum_{j=1}^k lim_{n to infty} {x_n^j - 1 over x_n - 1} $$
(note that this is a sum of finitely many terms).
Now we can do the division to get
$$ sum_{j=1}^k lim_{n to infty} (1 + x_n + x_n^2 + cdots + x_n^{j-1}) $$
and the limit can be written as a sum of (again, finitely many!) limits. This gives
$$ sum_{j=1}^k sum_{i=0}^{j-1} lim_{n to infty} x_n^i $$
Finally the innermost limit is, for each $n$ and $i$, equal to $(lim_{n to infty} x_n)^i = 1^i = 1$ so this is just
$$ sum_{j=1}^k sum_{i=0}^{j-1} 1 = sum_{j=1}^k j = {k(k+1) over 2}$$
as desired.
answered Jan 15 at 16:13
Michael LugoMichael Lugo
18k33576
18k33576
$begingroup$
That one is a nice approach
$endgroup$
– roman
Jan 15 at 16:16
add a comment |
$begingroup$
That one is a nice approach
$endgroup$
– roman
Jan 15 at 16:16
$begingroup$
That one is a nice approach
$endgroup$
– roman
Jan 15 at 16:16
$begingroup$
That one is a nice approach
$endgroup$
– roman
Jan 15 at 16:16
add a comment |
$begingroup$
Let $y_n=x_n-1$ and then $lim_{ntoinfty}y_n=1$. Note
begin{eqnarray*}
&&frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n-1}\
&=&frac{(y_n+1)^{k+1}-(k+1)(y_n+1)+k}{y_n^2}\
&=&frac{sum_{i=0}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n-1}{y_n^2}\
&=&frac{sum_{i=2}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n}{y_n^2}\
&=&sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
end{eqnarray*}
and hence
begin{eqnarray*}
&&lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}\
&=&lim_{ntoinfty}sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
&=&binom{k+1}{2}=frac12k(k+1).
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Let $y_n=x_n-1$ and then $lim_{ntoinfty}y_n=1$. Note
begin{eqnarray*}
&&frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n-1}\
&=&frac{(y_n+1)^{k+1}-(k+1)(y_n+1)+k}{y_n^2}\
&=&frac{sum_{i=0}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n-1}{y_n^2}\
&=&frac{sum_{i=2}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n}{y_n^2}\
&=&sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
end{eqnarray*}
and hence
begin{eqnarray*}
&&lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}\
&=&lim_{ntoinfty}sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
&=&binom{k+1}{2}=frac12k(k+1).
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Let $y_n=x_n-1$ and then $lim_{ntoinfty}y_n=1$. Note
begin{eqnarray*}
&&frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n-1}\
&=&frac{(y_n+1)^{k+1}-(k+1)(y_n+1)+k}{y_n^2}\
&=&frac{sum_{i=0}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n-1}{y_n^2}\
&=&frac{sum_{i=2}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n}{y_n^2}\
&=&sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
end{eqnarray*}
and hence
begin{eqnarray*}
&&lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}\
&=&lim_{ntoinfty}sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
&=&binom{k+1}{2}=frac12k(k+1).
end{eqnarray*}
$endgroup$
Let $y_n=x_n-1$ and then $lim_{ntoinfty}y_n=1$. Note
begin{eqnarray*}
&&frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n-1}\
&=&frac{(y_n+1)^{k+1}-(k+1)(y_n+1)+k}{y_n^2}\
&=&frac{sum_{i=0}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n-1}{y_n^2}\
&=&frac{sum_{i=2}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n}{y_n^2}\
&=&sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
end{eqnarray*}
and hence
begin{eqnarray*}
&&lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}\
&=&lim_{ntoinfty}sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
&=&binom{k+1}{2}=frac12k(k+1).
end{eqnarray*}
answered Jan 15 at 16:11
xpaulxpaul
22.7k24455
22.7k24455
add a comment |
add a comment |
$begingroup$
This could be realized as a derivative. Let us define
$$f(x)=x^1+x^2+cdots+x^k,.$$
Then
$$lim_{xrightarrow 1}frac{f(x)-f(1)}{x-1}=f'(1)=1+2cdot 1^1+cdots+kcdot 1^{k-1}=frac{k(k+1)}{2},.$$
$endgroup$
add a comment |
$begingroup$
This could be realized as a derivative. Let us define
$$f(x)=x^1+x^2+cdots+x^k,.$$
Then
$$lim_{xrightarrow 1}frac{f(x)-f(1)}{x-1}=f'(1)=1+2cdot 1^1+cdots+kcdot 1^{k-1}=frac{k(k+1)}{2},.$$
$endgroup$
add a comment |
$begingroup$
This could be realized as a derivative. Let us define
$$f(x)=x^1+x^2+cdots+x^k,.$$
Then
$$lim_{xrightarrow 1}frac{f(x)-f(1)}{x-1}=f'(1)=1+2cdot 1^1+cdots+kcdot 1^{k-1}=frac{k(k+1)}{2},.$$
$endgroup$
This could be realized as a derivative. Let us define
$$f(x)=x^1+x^2+cdots+x^k,.$$
Then
$$lim_{xrightarrow 1}frac{f(x)-f(1)}{x-1}=f'(1)=1+2cdot 1^1+cdots+kcdot 1^{k-1}=frac{k(k+1)}{2},.$$
answered Jan 16 at 1:20
Robert WolfeRobert Wolfe
5,79222763
5,79222763
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074572%2ffind-the-limit-lim-n-to-infty-fracx-n-x-n2-cdots-x-nk-kx-n-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
$endgroup$
– Crostul
Jan 15 at 16:05
$begingroup$
Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
$endgroup$
– Keen-ameteur
Jan 15 at 16:11
$begingroup$
@Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
$endgroup$
– roman
Jan 15 at 16:13
$begingroup$
Okay, then nevermind.
$endgroup$
– Keen-ameteur
Jan 15 at 16:14