Find the limit $lim_{ntoinfty}frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}$ given $x_n ne 1$ and $lim x_n =...












2












$begingroup$



Let $x_n$ denote a sequence, $ninBbb N$. Evaluate the limit:
$$
lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}, kinBbb N
$$

given
$$
lim_{ntoinfty} x_n = 1 \
x_n ne 1
$$




I'm interested in verifying the following results. Denote:
$$
y_n = frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}
$$

After some trials long division seem to produce a pattern here. Not sure how to put it here in a fancy way, so I will post the result only. It appears that:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k
$$



It is given that $lim x_n = 1$ therefore we may use the following properties:
$$
lim(a_n + b_n) = lim a_n + lim b_n\
lim(a_n cdot b_n) = lim a_n cdot lim b_n
$$



In particular:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k\
lim_{ntoinfty}y_n =lim_{ntoinfty}left(x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + kright)
$$



Then since $lim x_n = 1$ and by the sum of first $k$ integers:
$$
lim_{ntoinfty} y_n = frac{k(k+1)}{2}
$$



Could you please verify whether the reasoning above is correct or not and point to the mistakes in case of any? Thank you!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
    $endgroup$
    – Crostul
    Jan 15 at 16:05










  • $begingroup$
    Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
    $endgroup$
    – Keen-ameteur
    Jan 15 at 16:11










  • $begingroup$
    @Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
    $endgroup$
    – roman
    Jan 15 at 16:13










  • $begingroup$
    Okay, then nevermind.
    $endgroup$
    – Keen-ameteur
    Jan 15 at 16:14
















2












$begingroup$



Let $x_n$ denote a sequence, $ninBbb N$. Evaluate the limit:
$$
lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}, kinBbb N
$$

given
$$
lim_{ntoinfty} x_n = 1 \
x_n ne 1
$$




I'm interested in verifying the following results. Denote:
$$
y_n = frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}
$$

After some trials long division seem to produce a pattern here. Not sure how to put it here in a fancy way, so I will post the result only. It appears that:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k
$$



It is given that $lim x_n = 1$ therefore we may use the following properties:
$$
lim(a_n + b_n) = lim a_n + lim b_n\
lim(a_n cdot b_n) = lim a_n cdot lim b_n
$$



In particular:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k\
lim_{ntoinfty}y_n =lim_{ntoinfty}left(x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + kright)
$$



Then since $lim x_n = 1$ and by the sum of first $k$ integers:
$$
lim_{ntoinfty} y_n = frac{k(k+1)}{2}
$$



Could you please verify whether the reasoning above is correct or not and point to the mistakes in case of any? Thank you!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
    $endgroup$
    – Crostul
    Jan 15 at 16:05










  • $begingroup$
    Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
    $endgroup$
    – Keen-ameteur
    Jan 15 at 16:11










  • $begingroup$
    @Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
    $endgroup$
    – roman
    Jan 15 at 16:13










  • $begingroup$
    Okay, then nevermind.
    $endgroup$
    – Keen-ameteur
    Jan 15 at 16:14














2












2








2


1



$begingroup$



Let $x_n$ denote a sequence, $ninBbb N$. Evaluate the limit:
$$
lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}, kinBbb N
$$

given
$$
lim_{ntoinfty} x_n = 1 \
x_n ne 1
$$




I'm interested in verifying the following results. Denote:
$$
y_n = frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}
$$

After some trials long division seem to produce a pattern here. Not sure how to put it here in a fancy way, so I will post the result only. It appears that:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k
$$



It is given that $lim x_n = 1$ therefore we may use the following properties:
$$
lim(a_n + b_n) = lim a_n + lim b_n\
lim(a_n cdot b_n) = lim a_n cdot lim b_n
$$



In particular:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k\
lim_{ntoinfty}y_n =lim_{ntoinfty}left(x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + kright)
$$



Then since $lim x_n = 1$ and by the sum of first $k$ integers:
$$
lim_{ntoinfty} y_n = frac{k(k+1)}{2}
$$



Could you please verify whether the reasoning above is correct or not and point to the mistakes in case of any? Thank you!










share|cite|improve this question











$endgroup$





Let $x_n$ denote a sequence, $ninBbb N$. Evaluate the limit:
$$
lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}, kinBbb N
$$

given
$$
lim_{ntoinfty} x_n = 1 \
x_n ne 1
$$




I'm interested in verifying the following results. Denote:
$$
y_n = frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}
$$

After some trials long division seem to produce a pattern here. Not sure how to put it here in a fancy way, so I will post the result only. It appears that:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k
$$



It is given that $lim x_n = 1$ therefore we may use the following properties:
$$
lim(a_n + b_n) = lim a_n + lim b_n\
lim(a_n cdot b_n) = lim a_n cdot lim b_n
$$



In particular:
$$
y_n = x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + k\
lim_{ntoinfty}y_n =lim_{ntoinfty}left(x_n^{k-1} + 2x_n^{k-2}+cdots + (k-1)x_n + kright)
$$



Then since $lim x_n = 1$ and by the sum of first $k$ integers:
$$
lim_{ntoinfty} y_n = frac{k(k+1)}{2}
$$



Could you please verify whether the reasoning above is correct or not and point to the mistakes in case of any? Thank you!







calculus sequences-and-series limits proof-verification






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 15:56







roman

















asked Jan 15 at 15:50









romanroman

2,17321224




2,17321224












  • $begingroup$
    Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
    $endgroup$
    – Crostul
    Jan 15 at 16:05










  • $begingroup$
    Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
    $endgroup$
    – Keen-ameteur
    Jan 15 at 16:11










  • $begingroup$
    @Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
    $endgroup$
    – roman
    Jan 15 at 16:13










  • $begingroup$
    Okay, then nevermind.
    $endgroup$
    – Keen-ameteur
    Jan 15 at 16:14


















  • $begingroup$
    Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
    $endgroup$
    – Crostul
    Jan 15 at 16:05










  • $begingroup$
    Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
    $endgroup$
    – Keen-ameteur
    Jan 15 at 16:11










  • $begingroup$
    @Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
    $endgroup$
    – roman
    Jan 15 at 16:13










  • $begingroup$
    Okay, then nevermind.
    $endgroup$
    – Keen-ameteur
    Jan 15 at 16:14
















$begingroup$
Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
$endgroup$
– Crostul
Jan 15 at 16:05




$begingroup$
Your argument is correct. The limit is indeed $frac{1}{2}k(k+1)$
$endgroup$
– Crostul
Jan 15 at 16:05












$begingroup$
Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
$endgroup$
– Keen-ameteur
Jan 15 at 16:11




$begingroup$
Not to dampen your spirit, but perhaps a proof using L'Hopital would be shorter?
$endgroup$
– Keen-ameteur
Jan 15 at 16:11












$begingroup$
@Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
$endgroup$
– roman
Jan 15 at 16:13




$begingroup$
@Keen-ameteur Unfortunately I'm not supposed to use derivatives or even Stolz-Cesaro since none of them has been yet defined at where i am now in the book.
$endgroup$
– roman
Jan 15 at 16:13












$begingroup$
Okay, then nevermind.
$endgroup$
– Keen-ameteur
Jan 15 at 16:14




$begingroup$
Okay, then nevermind.
$endgroup$
– Keen-ameteur
Jan 15 at 16:14










3 Answers
3






active

oldest

votes


















2












$begingroup$

Rewrite the limit as



$$ sum_{j=1}^k lim_{n to infty} {x_n^j - 1 over x_n - 1} $$



(note that this is a sum of finitely many terms).



Now we can do the division to get



$$ sum_{j=1}^k lim_{n to infty} (1 + x_n + x_n^2 + cdots + x_n^{j-1}) $$



and the limit can be written as a sum of (again, finitely many!) limits. This gives



$$ sum_{j=1}^k sum_{i=0}^{j-1} lim_{n to infty} x_n^i $$



Finally the innermost limit is, for each $n$ and $i$, equal to $(lim_{n to infty} x_n)^i = 1^i = 1$ so this is just



$$ sum_{j=1}^k sum_{i=0}^{j-1} 1 = sum_{j=1}^k j = {k(k+1) over 2}$$



as desired.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    That one is a nice approach
    $endgroup$
    – roman
    Jan 15 at 16:16



















1












$begingroup$

Let $y_n=x_n-1$ and then $lim_{ntoinfty}y_n=1$. Note
begin{eqnarray*}
&&frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n-1}\
&=&frac{(y_n+1)^{k+1}-(k+1)(y_n+1)+k}{y_n^2}\
&=&frac{sum_{i=0}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n-1}{y_n^2}\
&=&frac{sum_{i=2}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n}{y_n^2}\
&=&sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
end{eqnarray*}

and hence
begin{eqnarray*}
&&lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}\
&=&lim_{ntoinfty}sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
&=&binom{k+1}{2}=frac12k(k+1).
end{eqnarray*}






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    This could be realized as a derivative. Let us define
    $$f(x)=x^1+x^2+cdots+x^k,.$$
    Then
    $$lim_{xrightarrow 1}frac{f(x)-f(1)}{x-1}=f'(1)=1+2cdot 1^1+cdots+kcdot 1^{k-1}=frac{k(k+1)}{2},.$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074572%2ffind-the-limit-lim-n-to-infty-fracx-n-x-n2-cdots-x-nk-kx-n-1%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Rewrite the limit as



      $$ sum_{j=1}^k lim_{n to infty} {x_n^j - 1 over x_n - 1} $$



      (note that this is a sum of finitely many terms).



      Now we can do the division to get



      $$ sum_{j=1}^k lim_{n to infty} (1 + x_n + x_n^2 + cdots + x_n^{j-1}) $$



      and the limit can be written as a sum of (again, finitely many!) limits. This gives



      $$ sum_{j=1}^k sum_{i=0}^{j-1} lim_{n to infty} x_n^i $$



      Finally the innermost limit is, for each $n$ and $i$, equal to $(lim_{n to infty} x_n)^i = 1^i = 1$ so this is just



      $$ sum_{j=1}^k sum_{i=0}^{j-1} 1 = sum_{j=1}^k j = {k(k+1) over 2}$$



      as desired.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        That one is a nice approach
        $endgroup$
        – roman
        Jan 15 at 16:16
















      2












      $begingroup$

      Rewrite the limit as



      $$ sum_{j=1}^k lim_{n to infty} {x_n^j - 1 over x_n - 1} $$



      (note that this is a sum of finitely many terms).



      Now we can do the division to get



      $$ sum_{j=1}^k lim_{n to infty} (1 + x_n + x_n^2 + cdots + x_n^{j-1}) $$



      and the limit can be written as a sum of (again, finitely many!) limits. This gives



      $$ sum_{j=1}^k sum_{i=0}^{j-1} lim_{n to infty} x_n^i $$



      Finally the innermost limit is, for each $n$ and $i$, equal to $(lim_{n to infty} x_n)^i = 1^i = 1$ so this is just



      $$ sum_{j=1}^k sum_{i=0}^{j-1} 1 = sum_{j=1}^k j = {k(k+1) over 2}$$



      as desired.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        That one is a nice approach
        $endgroup$
        – roman
        Jan 15 at 16:16














      2












      2








      2





      $begingroup$

      Rewrite the limit as



      $$ sum_{j=1}^k lim_{n to infty} {x_n^j - 1 over x_n - 1} $$



      (note that this is a sum of finitely many terms).



      Now we can do the division to get



      $$ sum_{j=1}^k lim_{n to infty} (1 + x_n + x_n^2 + cdots + x_n^{j-1}) $$



      and the limit can be written as a sum of (again, finitely many!) limits. This gives



      $$ sum_{j=1}^k sum_{i=0}^{j-1} lim_{n to infty} x_n^i $$



      Finally the innermost limit is, for each $n$ and $i$, equal to $(lim_{n to infty} x_n)^i = 1^i = 1$ so this is just



      $$ sum_{j=1}^k sum_{i=0}^{j-1} 1 = sum_{j=1}^k j = {k(k+1) over 2}$$



      as desired.






      share|cite|improve this answer









      $endgroup$



      Rewrite the limit as



      $$ sum_{j=1}^k lim_{n to infty} {x_n^j - 1 over x_n - 1} $$



      (note that this is a sum of finitely many terms).



      Now we can do the division to get



      $$ sum_{j=1}^k lim_{n to infty} (1 + x_n + x_n^2 + cdots + x_n^{j-1}) $$



      and the limit can be written as a sum of (again, finitely many!) limits. This gives



      $$ sum_{j=1}^k sum_{i=0}^{j-1} lim_{n to infty} x_n^i $$



      Finally the innermost limit is, for each $n$ and $i$, equal to $(lim_{n to infty} x_n)^i = 1^i = 1$ so this is just



      $$ sum_{j=1}^k sum_{i=0}^{j-1} 1 = sum_{j=1}^k j = {k(k+1) over 2}$$



      as desired.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 15 at 16:13









      Michael LugoMichael Lugo

      18k33576




      18k33576












      • $begingroup$
        That one is a nice approach
        $endgroup$
        – roman
        Jan 15 at 16:16


















      • $begingroup$
        That one is a nice approach
        $endgroup$
        – roman
        Jan 15 at 16:16
















      $begingroup$
      That one is a nice approach
      $endgroup$
      – roman
      Jan 15 at 16:16




      $begingroup$
      That one is a nice approach
      $endgroup$
      – roman
      Jan 15 at 16:16











      1












      $begingroup$

      Let $y_n=x_n-1$ and then $lim_{ntoinfty}y_n=1$. Note
      begin{eqnarray*}
      &&frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n-1}\
      &=&frac{(y_n+1)^{k+1}-(k+1)(y_n+1)+k}{y_n^2}\
      &=&frac{sum_{i=0}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n-1}{y_n^2}\
      &=&frac{sum_{i=2}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n}{y_n^2}\
      &=&sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
      end{eqnarray*}

      and hence
      begin{eqnarray*}
      &&lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}\
      &=&lim_{ntoinfty}sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
      &=&binom{k+1}{2}=frac12k(k+1).
      end{eqnarray*}






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Let $y_n=x_n-1$ and then $lim_{ntoinfty}y_n=1$. Note
        begin{eqnarray*}
        &&frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n-1}\
        &=&frac{(y_n+1)^{k+1}-(k+1)(y_n+1)+k}{y_n^2}\
        &=&frac{sum_{i=0}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n-1}{y_n^2}\
        &=&frac{sum_{i=2}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n}{y_n^2}\
        &=&sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
        end{eqnarray*}

        and hence
        begin{eqnarray*}
        &&lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}\
        &=&lim_{ntoinfty}sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
        &=&binom{k+1}{2}=frac12k(k+1).
        end{eqnarray*}






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Let $y_n=x_n-1$ and then $lim_{ntoinfty}y_n=1$. Note
          begin{eqnarray*}
          &&frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n-1}\
          &=&frac{(y_n+1)^{k+1}-(k+1)(y_n+1)+k}{y_n^2}\
          &=&frac{sum_{i=0}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n-1}{y_n^2}\
          &=&frac{sum_{i=2}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n}{y_n^2}\
          &=&sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
          end{eqnarray*}

          and hence
          begin{eqnarray*}
          &&lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}\
          &=&lim_{ntoinfty}sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
          &=&binom{k+1}{2}=frac12k(k+1).
          end{eqnarray*}






          share|cite|improve this answer









          $endgroup$



          Let $y_n=x_n-1$ and then $lim_{ntoinfty}y_n=1$. Note
          begin{eqnarray*}
          &&frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n-1}\
          &=&frac{(y_n+1)^{k+1}-(k+1)(y_n+1)+k}{y_n^2}\
          &=&frac{sum_{i=0}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n-1}{y_n^2}\
          &=&frac{sum_{i=2}^{k+1}binom{k+1}{i}y_n^i-(k+1)y_n}{y_n^2}\
          &=&sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
          end{eqnarray*}

          and hence
          begin{eqnarray*}
          &&lim_{ntoinfty} frac{x_n + x_n^2 + cdots + x_n^k - k}{x_n - 1}\
          &=&lim_{ntoinfty}sum_{i=2}^{k+1}binom{k+1}{i}y_n^{i-2}\
          &=&binom{k+1}{2}=frac12k(k+1).
          end{eqnarray*}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 15 at 16:11









          xpaulxpaul

          22.7k24455




          22.7k24455























              1












              $begingroup$

              This could be realized as a derivative. Let us define
              $$f(x)=x^1+x^2+cdots+x^k,.$$
              Then
              $$lim_{xrightarrow 1}frac{f(x)-f(1)}{x-1}=f'(1)=1+2cdot 1^1+cdots+kcdot 1^{k-1}=frac{k(k+1)}{2},.$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                This could be realized as a derivative. Let us define
                $$f(x)=x^1+x^2+cdots+x^k,.$$
                Then
                $$lim_{xrightarrow 1}frac{f(x)-f(1)}{x-1}=f'(1)=1+2cdot 1^1+cdots+kcdot 1^{k-1}=frac{k(k+1)}{2},.$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  This could be realized as a derivative. Let us define
                  $$f(x)=x^1+x^2+cdots+x^k,.$$
                  Then
                  $$lim_{xrightarrow 1}frac{f(x)-f(1)}{x-1}=f'(1)=1+2cdot 1^1+cdots+kcdot 1^{k-1}=frac{k(k+1)}{2},.$$






                  share|cite|improve this answer









                  $endgroup$



                  This could be realized as a derivative. Let us define
                  $$f(x)=x^1+x^2+cdots+x^k,.$$
                  Then
                  $$lim_{xrightarrow 1}frac{f(x)-f(1)}{x-1}=f'(1)=1+2cdot 1^1+cdots+kcdot 1^{k-1}=frac{k(k+1)}{2},.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 16 at 1:20









                  Robert WolfeRobert Wolfe

                  5,79222763




                  5,79222763






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074572%2ffind-the-limit-lim-n-to-infty-fracx-n-x-n2-cdots-x-nk-kx-n-1%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Mario Kart Wii

                      What does “Dominus providebit” mean?

                      Antonio Litta Visconti Arese