Using Stirling's formula, show that limit is equal to zero












0












$begingroup$


Let $lambdain(0,1)$,
$h=lfloor(i+1)lambdarfloor $.
Show
$$
lim_{itoinfty}binom{i}{h}(1-lambda)^{(i-h)}lambda^{h}=0
$$



I was able to prove that for $lambda=frac{1}{2}$ using approximation for central binomial coefficent
$binom{2n}{n}approxfrac{4^n}{sqrt{pi n}}$. But not the other cases.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $lambdain(0,1)$,
    $h=lfloor(i+1)lambdarfloor $.
    Show
    $$
    lim_{itoinfty}binom{i}{h}(1-lambda)^{(i-h)}lambda^{h}=0
    $$



    I was able to prove that for $lambda=frac{1}{2}$ using approximation for central binomial coefficent
    $binom{2n}{n}approxfrac{4^n}{sqrt{pi n}}$. But not the other cases.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $lambdain(0,1)$,
      $h=lfloor(i+1)lambdarfloor $.
      Show
      $$
      lim_{itoinfty}binom{i}{h}(1-lambda)^{(i-h)}lambda^{h}=0
      $$



      I was able to prove that for $lambda=frac{1}{2}$ using approximation for central binomial coefficent
      $binom{2n}{n}approxfrac{4^n}{sqrt{pi n}}$. But not the other cases.










      share|cite|improve this question









      $endgroup$




      Let $lambdain(0,1)$,
      $h=lfloor(i+1)lambdarfloor $.
      Show
      $$
      lim_{itoinfty}binom{i}{h}(1-lambda)^{(i-h)}lambda^{h}=0
      $$



      I was able to prove that for $lambda=frac{1}{2}$ using approximation for central binomial coefficent
      $binom{2n}{n}approxfrac{4^n}{sqrt{pi n}}$. But not the other cases.







      limits asymptotics binomial-coefficients






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 9 at 21:07









      user121882user121882

      6615




      6615






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Hint: First note that $hto infty$ and $i-hto infty$ as $ito infty$.
          Apply the Stirling approximation for the binomial
          $$ binom{i}{h} =frac{i!}{h! (i-h)!}approx
          sqrt frac{i}{2 pi h (h-i)} left(frac{i}{i-h}right)^i left(frac{i-h}{h}right)^h $$



          And write $h=(i+1)lambda-epsilon$ with $0le epsilon <1$, replace and evaluate the limit.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067947%2fusing-stirlings-formula-show-that-limit-is-equal-to-zero%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Hint: First note that $hto infty$ and $i-hto infty$ as $ito infty$.
            Apply the Stirling approximation for the binomial
            $$ binom{i}{h} =frac{i!}{h! (i-h)!}approx
            sqrt frac{i}{2 pi h (h-i)} left(frac{i}{i-h}right)^i left(frac{i-h}{h}right)^h $$



            And write $h=(i+1)lambda-epsilon$ with $0le epsilon <1$, replace and evaluate the limit.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Hint: First note that $hto infty$ and $i-hto infty$ as $ito infty$.
              Apply the Stirling approximation for the binomial
              $$ binom{i}{h} =frac{i!}{h! (i-h)!}approx
              sqrt frac{i}{2 pi h (h-i)} left(frac{i}{i-h}right)^i left(frac{i-h}{h}right)^h $$



              And write $h=(i+1)lambda-epsilon$ with $0le epsilon <1$, replace and evaluate the limit.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Hint: First note that $hto infty$ and $i-hto infty$ as $ito infty$.
                Apply the Stirling approximation for the binomial
                $$ binom{i}{h} =frac{i!}{h! (i-h)!}approx
                sqrt frac{i}{2 pi h (h-i)} left(frac{i}{i-h}right)^i left(frac{i-h}{h}right)^h $$



                And write $h=(i+1)lambda-epsilon$ with $0le epsilon <1$, replace and evaluate the limit.






                share|cite|improve this answer









                $endgroup$



                Hint: First note that $hto infty$ and $i-hto infty$ as $ito infty$.
                Apply the Stirling approximation for the binomial
                $$ binom{i}{h} =frac{i!}{h! (i-h)!}approx
                sqrt frac{i}{2 pi h (h-i)} left(frac{i}{i-h}right)^i left(frac{i-h}{h}right)^h $$



                And write $h=(i+1)lambda-epsilon$ with $0le epsilon <1$, replace and evaluate the limit.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 12 at 3:23









                leonbloyleonbloy

                40.6k645107




                40.6k645107






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067947%2fusing-stirlings-formula-show-that-limit-is-equal-to-zero%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Mario Kart Wii

                    The Binding of Isaac: Rebirth/Afterbirth

                    Dobbiaco