Using Stirling's formula, show that limit is equal to zero
$begingroup$
Let $lambdain(0,1)$,
$h=lfloor(i+1)lambdarfloor $.
Show
$$
lim_{itoinfty}binom{i}{h}(1-lambda)^{(i-h)}lambda^{h}=0
$$
I was able to prove that for $lambda=frac{1}{2}$ using approximation for central binomial coefficent
$binom{2n}{n}approxfrac{4^n}{sqrt{pi n}}$. But not the other cases.
limits asymptotics binomial-coefficients
$endgroup$
add a comment |
$begingroup$
Let $lambdain(0,1)$,
$h=lfloor(i+1)lambdarfloor $.
Show
$$
lim_{itoinfty}binom{i}{h}(1-lambda)^{(i-h)}lambda^{h}=0
$$
I was able to prove that for $lambda=frac{1}{2}$ using approximation for central binomial coefficent
$binom{2n}{n}approxfrac{4^n}{sqrt{pi n}}$. But not the other cases.
limits asymptotics binomial-coefficients
$endgroup$
add a comment |
$begingroup$
Let $lambdain(0,1)$,
$h=lfloor(i+1)lambdarfloor $.
Show
$$
lim_{itoinfty}binom{i}{h}(1-lambda)^{(i-h)}lambda^{h}=0
$$
I was able to prove that for $lambda=frac{1}{2}$ using approximation for central binomial coefficent
$binom{2n}{n}approxfrac{4^n}{sqrt{pi n}}$. But not the other cases.
limits asymptotics binomial-coefficients
$endgroup$
Let $lambdain(0,1)$,
$h=lfloor(i+1)lambdarfloor $.
Show
$$
lim_{itoinfty}binom{i}{h}(1-lambda)^{(i-h)}lambda^{h}=0
$$
I was able to prove that for $lambda=frac{1}{2}$ using approximation for central binomial coefficent
$binom{2n}{n}approxfrac{4^n}{sqrt{pi n}}$. But not the other cases.
limits asymptotics binomial-coefficients
limits asymptotics binomial-coefficients
asked Jan 9 at 21:07
user121882user121882
6615
6615
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: First note that $hto infty$ and $i-hto infty$ as $ito infty$.
Apply the Stirling approximation for the binomial
$$ binom{i}{h} =frac{i!}{h! (i-h)!}approx
sqrt frac{i}{2 pi h (h-i)} left(frac{i}{i-h}right)^i left(frac{i-h}{h}right)^h $$
And write $h=(i+1)lambda-epsilon$ with $0le epsilon <1$, replace and evaluate the limit.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067947%2fusing-stirlings-formula-show-that-limit-is-equal-to-zero%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: First note that $hto infty$ and $i-hto infty$ as $ito infty$.
Apply the Stirling approximation for the binomial
$$ binom{i}{h} =frac{i!}{h! (i-h)!}approx
sqrt frac{i}{2 pi h (h-i)} left(frac{i}{i-h}right)^i left(frac{i-h}{h}right)^h $$
And write $h=(i+1)lambda-epsilon$ with $0le epsilon <1$, replace and evaluate the limit.
$endgroup$
add a comment |
$begingroup$
Hint: First note that $hto infty$ and $i-hto infty$ as $ito infty$.
Apply the Stirling approximation for the binomial
$$ binom{i}{h} =frac{i!}{h! (i-h)!}approx
sqrt frac{i}{2 pi h (h-i)} left(frac{i}{i-h}right)^i left(frac{i-h}{h}right)^h $$
And write $h=(i+1)lambda-epsilon$ with $0le epsilon <1$, replace and evaluate the limit.
$endgroup$
add a comment |
$begingroup$
Hint: First note that $hto infty$ and $i-hto infty$ as $ito infty$.
Apply the Stirling approximation for the binomial
$$ binom{i}{h} =frac{i!}{h! (i-h)!}approx
sqrt frac{i}{2 pi h (h-i)} left(frac{i}{i-h}right)^i left(frac{i-h}{h}right)^h $$
And write $h=(i+1)lambda-epsilon$ with $0le epsilon <1$, replace and evaluate the limit.
$endgroup$
Hint: First note that $hto infty$ and $i-hto infty$ as $ito infty$.
Apply the Stirling approximation for the binomial
$$ binom{i}{h} =frac{i!}{h! (i-h)!}approx
sqrt frac{i}{2 pi h (h-i)} left(frac{i}{i-h}right)^i left(frac{i-h}{h}right)^h $$
And write $h=(i+1)lambda-epsilon$ with $0le epsilon <1$, replace and evaluate the limit.
answered Jan 12 at 3:23
leonbloyleonbloy
40.6k645107
40.6k645107
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067947%2fusing-stirlings-formula-show-that-limit-is-equal-to-zero%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown