Find the determinant $Δ_n$












1












$begingroup$



Find the determinant $Delta_n$




$A_n = begin{bmatrix} 0 & 1 & 0 &dots &dots&0\ -1 & 0 &1 & 0&&vdots\ 0&-1 & 0 &1 &ddots&vdots\ vdots& & & &ddots&0\ vdots& & ddots &ddots &ddots&1\ 0 & dots & dots &0&-1&0 end{bmatrix} in M_n(mathbb{K})$



After doing some tests I conclude $Delta_n$ is $0$ if $n$ is odd and $1$ if $n$ is even. How can I prove it formally? Any hint?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
    $endgroup$
    – A.Γ.
    Jan 9 at 21:40












  • $begingroup$
    An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
    $endgroup$
    – Omnomnomnom
    Jan 9 at 22:43










  • $begingroup$
    You could also use more general results about tridiagonal Toeplitz matrices
    $endgroup$
    – Omnomnomnom
    Jan 9 at 22:46
















1












$begingroup$



Find the determinant $Delta_n$




$A_n = begin{bmatrix} 0 & 1 & 0 &dots &dots&0\ -1 & 0 &1 & 0&&vdots\ 0&-1 & 0 &1 &ddots&vdots\ vdots& & & &ddots&0\ vdots& & ddots &ddots &ddots&1\ 0 & dots & dots &0&-1&0 end{bmatrix} in M_n(mathbb{K})$



After doing some tests I conclude $Delta_n$ is $0$ if $n$ is odd and $1$ if $n$ is even. How can I prove it formally? Any hint?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
    $endgroup$
    – A.Γ.
    Jan 9 at 21:40












  • $begingroup$
    An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
    $endgroup$
    – Omnomnomnom
    Jan 9 at 22:43










  • $begingroup$
    You could also use more general results about tridiagonal Toeplitz matrices
    $endgroup$
    – Omnomnomnom
    Jan 9 at 22:46














1












1








1





$begingroup$



Find the determinant $Delta_n$




$A_n = begin{bmatrix} 0 & 1 & 0 &dots &dots&0\ -1 & 0 &1 & 0&&vdots\ 0&-1 & 0 &1 &ddots&vdots\ vdots& & & &ddots&0\ vdots& & ddots &ddots &ddots&1\ 0 & dots & dots &0&-1&0 end{bmatrix} in M_n(mathbb{K})$



After doing some tests I conclude $Delta_n$ is $0$ if $n$ is odd and $1$ if $n$ is even. How can I prove it formally? Any hint?










share|cite|improve this question











$endgroup$





Find the determinant $Delta_n$




$A_n = begin{bmatrix} 0 & 1 & 0 &dots &dots&0\ -1 & 0 &1 & 0&&vdots\ 0&-1 & 0 &1 &ddots&vdots\ vdots& & & &ddots&0\ vdots& & ddots &ddots &ddots&1\ 0 & dots & dots &0&-1&0 end{bmatrix} in M_n(mathbb{K})$



After doing some tests I conclude $Delta_n$ is $0$ if $n$ is odd and $1$ if $n$ is even. How can I prove it formally? Any hint?







linear-algebra matrices determinant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 9 at 21:33







Jhon Knows

















asked Jan 9 at 21:21









Jhon KnowsJhon Knows

83




83








  • 1




    $begingroup$
    Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
    $endgroup$
    – A.Γ.
    Jan 9 at 21:40












  • $begingroup$
    An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
    $endgroup$
    – Omnomnomnom
    Jan 9 at 22:43










  • $begingroup$
    You could also use more general results about tridiagonal Toeplitz matrices
    $endgroup$
    – Omnomnomnom
    Jan 9 at 22:46














  • 1




    $begingroup$
    Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
    $endgroup$
    – A.Γ.
    Jan 9 at 21:40












  • $begingroup$
    An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
    $endgroup$
    – Omnomnomnom
    Jan 9 at 22:43










  • $begingroup$
    You could also use more general results about tridiagonal Toeplitz matrices
    $endgroup$
    – Omnomnomnom
    Jan 9 at 22:46








1




1




$begingroup$
Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
$endgroup$
– A.Γ.
Jan 9 at 21:40






$begingroup$
Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
$endgroup$
– A.Γ.
Jan 9 at 21:40














$begingroup$
An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
$endgroup$
– Omnomnomnom
Jan 9 at 22:43




$begingroup$
An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
$endgroup$
– Omnomnomnom
Jan 9 at 22:43












$begingroup$
You could also use more general results about tridiagonal Toeplitz matrices
$endgroup$
– Omnomnomnom
Jan 9 at 22:46




$begingroup$
You could also use more general results about tridiagonal Toeplitz matrices
$endgroup$
– Omnomnomnom
Jan 9 at 22:46










1 Answer
1






active

oldest

votes


















2












$begingroup$

Hint:



Expanding by the last row, prove that
$$Delta_n=begin{vmatrix}0&1&0&dots&0&0&0 \ -1&0&1&dots&0&0&0 \ 0&-1& 0 & cdots&0&0&0\
vdots&&& vdots &&&vdots \0&0&0&cdots&0&1&0 \0&0&0&dots&-1&0&0 \0&0&0&dots&0&-1&1end{vmatrix}=Delta_{n-2} ;text{ (expanding by the last column)}$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067962%2ffind-the-determinant-%25ce%2594-n%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Hint:



    Expanding by the last row, prove that
    $$Delta_n=begin{vmatrix}0&1&0&dots&0&0&0 \ -1&0&1&dots&0&0&0 \ 0&-1& 0 & cdots&0&0&0\
    vdots&&& vdots &&&vdots \0&0&0&cdots&0&1&0 \0&0&0&dots&-1&0&0 \0&0&0&dots&0&-1&1end{vmatrix}=Delta_{n-2} ;text{ (expanding by the last column)}$$






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      Hint:



      Expanding by the last row, prove that
      $$Delta_n=begin{vmatrix}0&1&0&dots&0&0&0 \ -1&0&1&dots&0&0&0 \ 0&-1& 0 & cdots&0&0&0\
      vdots&&& vdots &&&vdots \0&0&0&cdots&0&1&0 \0&0&0&dots&-1&0&0 \0&0&0&dots&0&-1&1end{vmatrix}=Delta_{n-2} ;text{ (expanding by the last column)}$$






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        Hint:



        Expanding by the last row, prove that
        $$Delta_n=begin{vmatrix}0&1&0&dots&0&0&0 \ -1&0&1&dots&0&0&0 \ 0&-1& 0 & cdots&0&0&0\
        vdots&&& vdots &&&vdots \0&0&0&cdots&0&1&0 \0&0&0&dots&-1&0&0 \0&0&0&dots&0&-1&1end{vmatrix}=Delta_{n-2} ;text{ (expanding by the last column)}$$






        share|cite|improve this answer











        $endgroup$



        Hint:



        Expanding by the last row, prove that
        $$Delta_n=begin{vmatrix}0&1&0&dots&0&0&0 \ -1&0&1&dots&0&0&0 \ 0&-1& 0 & cdots&0&0&0\
        vdots&&& vdots &&&vdots \0&0&0&cdots&0&1&0 \0&0&0&dots&-1&0&0 \0&0&0&dots&0&-1&1end{vmatrix}=Delta_{n-2} ;text{ (expanding by the last column)}$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 10 at 18:18

























        answered Jan 9 at 22:33









        BernardBernard

        119k740113




        119k740113






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067962%2ffind-the-determinant-%25ce%2594-n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            Dobbiaco