Find the determinant $Δ_n$
$begingroup$
Find the determinant $Delta_n$
$A_n = begin{bmatrix} 0 & 1 & 0 &dots &dots&0\ -1 & 0 &1 & 0&&vdots\ 0&-1 & 0 &1 &ddots&vdots\ vdots& & & &ddots&0\ vdots& & ddots &ddots &ddots&1\ 0 & dots & dots &0&-1&0 end{bmatrix} in M_n(mathbb{K})$
After doing some tests I conclude $Delta_n$ is $0$ if $n$ is odd and $1$ if $n$ is even. How can I prove it formally? Any hint?
linear-algebra matrices determinant
$endgroup$
add a comment |
$begingroup$
Find the determinant $Delta_n$
$A_n = begin{bmatrix} 0 & 1 & 0 &dots &dots&0\ -1 & 0 &1 & 0&&vdots\ 0&-1 & 0 &1 &ddots&vdots\ vdots& & & &ddots&0\ vdots& & ddots &ddots &ddots&1\ 0 & dots & dots &0&-1&0 end{bmatrix} in M_n(mathbb{K})$
After doing some tests I conclude $Delta_n$ is $0$ if $n$ is odd and $1$ if $n$ is even. How can I prove it formally? Any hint?
linear-algebra matrices determinant
$endgroup$
1
$begingroup$
Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
$endgroup$
– A.Γ.
Jan 9 at 21:40
$begingroup$
An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
$endgroup$
– Omnomnomnom
Jan 9 at 22:43
$begingroup$
You could also use more general results about tridiagonal Toeplitz matrices
$endgroup$
– Omnomnomnom
Jan 9 at 22:46
add a comment |
$begingroup$
Find the determinant $Delta_n$
$A_n = begin{bmatrix} 0 & 1 & 0 &dots &dots&0\ -1 & 0 &1 & 0&&vdots\ 0&-1 & 0 &1 &ddots&vdots\ vdots& & & &ddots&0\ vdots& & ddots &ddots &ddots&1\ 0 & dots & dots &0&-1&0 end{bmatrix} in M_n(mathbb{K})$
After doing some tests I conclude $Delta_n$ is $0$ if $n$ is odd and $1$ if $n$ is even. How can I prove it formally? Any hint?
linear-algebra matrices determinant
$endgroup$
Find the determinant $Delta_n$
$A_n = begin{bmatrix} 0 & 1 & 0 &dots &dots&0\ -1 & 0 &1 & 0&&vdots\ 0&-1 & 0 &1 &ddots&vdots\ vdots& & & &ddots&0\ vdots& & ddots &ddots &ddots&1\ 0 & dots & dots &0&-1&0 end{bmatrix} in M_n(mathbb{K})$
After doing some tests I conclude $Delta_n$ is $0$ if $n$ is odd and $1$ if $n$ is even. How can I prove it formally? Any hint?
linear-algebra matrices determinant
linear-algebra matrices determinant
edited Jan 9 at 21:33
Jhon Knows
asked Jan 9 at 21:21
Jhon KnowsJhon Knows
83
83
1
$begingroup$
Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
$endgroup$
– A.Γ.
Jan 9 at 21:40
$begingroup$
An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
$endgroup$
– Omnomnomnom
Jan 9 at 22:43
$begingroup$
You could also use more general results about tridiagonal Toeplitz matrices
$endgroup$
– Omnomnomnom
Jan 9 at 22:46
add a comment |
1
$begingroup$
Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
$endgroup$
– A.Γ.
Jan 9 at 21:40
$begingroup$
An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
$endgroup$
– Omnomnomnom
Jan 9 at 22:43
$begingroup$
You could also use more general results about tridiagonal Toeplitz matrices
$endgroup$
– Omnomnomnom
Jan 9 at 22:46
1
1
$begingroup$
Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
$endgroup$
– A.Γ.
Jan 9 at 21:40
$begingroup$
Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
$endgroup$
– A.Γ.
Jan 9 at 21:40
$begingroup$
An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
$endgroup$
– Omnomnomnom
Jan 9 at 22:43
$begingroup$
An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
$endgroup$
– Omnomnomnom
Jan 9 at 22:43
$begingroup$
You could also use more general results about tridiagonal Toeplitz matrices
$endgroup$
– Omnomnomnom
Jan 9 at 22:46
$begingroup$
You could also use more general results about tridiagonal Toeplitz matrices
$endgroup$
– Omnomnomnom
Jan 9 at 22:46
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
Expanding by the last row, prove that
$$Delta_n=begin{vmatrix}0&1&0&dots&0&0&0 \ -1&0&1&dots&0&0&0 \ 0&-1& 0 & cdots&0&0&0\
vdots&&& vdots &&&vdots \0&0&0&cdots&0&1&0 \0&0&0&dots&-1&0&0 \0&0&0&dots&0&-1&1end{vmatrix}=Delta_{n-2} ;text{ (expanding by the last column)}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067962%2ffind-the-determinant-%25ce%2594-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
Expanding by the last row, prove that
$$Delta_n=begin{vmatrix}0&1&0&dots&0&0&0 \ -1&0&1&dots&0&0&0 \ 0&-1& 0 & cdots&0&0&0\
vdots&&& vdots &&&vdots \0&0&0&cdots&0&1&0 \0&0&0&dots&-1&0&0 \0&0&0&dots&0&-1&1end{vmatrix}=Delta_{n-2} ;text{ (expanding by the last column)}$$
$endgroup$
add a comment |
$begingroup$
Hint:
Expanding by the last row, prove that
$$Delta_n=begin{vmatrix}0&1&0&dots&0&0&0 \ -1&0&1&dots&0&0&0 \ 0&-1& 0 & cdots&0&0&0\
vdots&&& vdots &&&vdots \0&0&0&cdots&0&1&0 \0&0&0&dots&-1&0&0 \0&0&0&dots&0&-1&1end{vmatrix}=Delta_{n-2} ;text{ (expanding by the last column)}$$
$endgroup$
add a comment |
$begingroup$
Hint:
Expanding by the last row, prove that
$$Delta_n=begin{vmatrix}0&1&0&dots&0&0&0 \ -1&0&1&dots&0&0&0 \ 0&-1& 0 & cdots&0&0&0\
vdots&&& vdots &&&vdots \0&0&0&cdots&0&1&0 \0&0&0&dots&-1&0&0 \0&0&0&dots&0&-1&1end{vmatrix}=Delta_{n-2} ;text{ (expanding by the last column)}$$
$endgroup$
Hint:
Expanding by the last row, prove that
$$Delta_n=begin{vmatrix}0&1&0&dots&0&0&0 \ -1&0&1&dots&0&0&0 \ 0&-1& 0 & cdots&0&0&0\
vdots&&& vdots &&&vdots \0&0&0&cdots&0&1&0 \0&0&0&dots&-1&0&0 \0&0&0&dots&0&-1&1end{vmatrix}=Delta_{n-2} ;text{ (expanding by the last column)}$$
edited Jan 10 at 18:18
answered Jan 9 at 22:33
BernardBernard
119k740113
119k740113
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067962%2ffind-the-determinant-%25ce%2594-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Do the Laplace expansion along the first row and column to get $Delta_n=Delta_{n-2}$. Then $Delta_1$ and $Delta_2$ are obvious.
$endgroup$
– A.Γ.
Jan 9 at 21:40
$begingroup$
An alternate approach for the case of odd $n$: $A$ is skew-symmetric. So, if $n$ is odd, we have $$ det(A) = det(A^T) = det(-A) = (-1)^n det(A) = -det(A) $$ That is, we have $det(A) = -det(A)$ which means that $det(A) = 0$.
$endgroup$
– Omnomnomnom
Jan 9 at 22:43
$begingroup$
You could also use more general results about tridiagonal Toeplitz matrices
$endgroup$
– Omnomnomnom
Jan 9 at 22:46