Change of variables in integral: the limits of $y = int_{sigma_0}^{R_M} frac{dR}{R} $
$begingroup$
I have this equation:
$$y = int_{sigma_0}^{R_M} frac{dR}{R} $$
where $x = R/sigma_0$
If I want to do a change of variables, I would have:
$$y = int frac{sigma_0}{xsigma_0} $$
$$y = int frac{1}{x} $$
My question is: What do the limits become?
integration change-of-variable
$endgroup$
add a comment |
$begingroup$
I have this equation:
$$y = int_{sigma_0}^{R_M} frac{dR}{R} $$
where $x = R/sigma_0$
If I want to do a change of variables, I would have:
$$y = int frac{sigma_0}{xsigma_0} $$
$$y = int frac{1}{x} $$
My question is: What do the limits become?
integration change-of-variable
$endgroup$
add a comment |
$begingroup$
I have this equation:
$$y = int_{sigma_0}^{R_M} frac{dR}{R} $$
where $x = R/sigma_0$
If I want to do a change of variables, I would have:
$$y = int frac{sigma_0}{xsigma_0} $$
$$y = int frac{1}{x} $$
My question is: What do the limits become?
integration change-of-variable
$endgroup$
I have this equation:
$$y = int_{sigma_0}^{R_M} frac{dR}{R} $$
where $x = R/sigma_0$
If I want to do a change of variables, I would have:
$$y = int frac{sigma_0}{xsigma_0} $$
$$y = int frac{1}{x} $$
My question is: What do the limits become?
integration change-of-variable
integration change-of-variable
edited Jan 9 at 21:02
Jackson Hart
asked Jan 9 at 20:34
Jackson HartJackson Hart
5052626
5052626
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$R; $ becomes $; xsigma_0$.
$dR; $ becomes $; sigma_0dx$.
$sigma_0; $ changes to $; frac{sigma_0}{sigma_0}$.
and
$R_M$ will become $frac{R_M}{sigma_0}$.
the integral is then
$$int_1^{frac{R_M}{sigma_0}}frac{sigma_0 dx}{xsigma_0}=$$
$$int_1^{frac{R_M}{sigma_0}}frac{dx}{x}.$$
$endgroup$
$begingroup$
Sorry I made a mistake. $R=xsigma_0$. Could you fix the answer?
$endgroup$
– Jackson Hart
Jan 9 at 21:02
add a comment |
$begingroup$
$R=sigma _0$ implies that $ x= frac {sigma_0}{sigma}$
$R=R_M $implies that $x=frac {R_M}{sigma}$
Thus the new bounds are the old ones divided by $sigma$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067918%2fchange-of-variables-in-integral-the-limits-of-y-int-sigma-0r-m-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$R; $ becomes $; xsigma_0$.
$dR; $ becomes $; sigma_0dx$.
$sigma_0; $ changes to $; frac{sigma_0}{sigma_0}$.
and
$R_M$ will become $frac{R_M}{sigma_0}$.
the integral is then
$$int_1^{frac{R_M}{sigma_0}}frac{sigma_0 dx}{xsigma_0}=$$
$$int_1^{frac{R_M}{sigma_0}}frac{dx}{x}.$$
$endgroup$
$begingroup$
Sorry I made a mistake. $R=xsigma_0$. Could you fix the answer?
$endgroup$
– Jackson Hart
Jan 9 at 21:02
add a comment |
$begingroup$
$R; $ becomes $; xsigma_0$.
$dR; $ becomes $; sigma_0dx$.
$sigma_0; $ changes to $; frac{sigma_0}{sigma_0}$.
and
$R_M$ will become $frac{R_M}{sigma_0}$.
the integral is then
$$int_1^{frac{R_M}{sigma_0}}frac{sigma_0 dx}{xsigma_0}=$$
$$int_1^{frac{R_M}{sigma_0}}frac{dx}{x}.$$
$endgroup$
$begingroup$
Sorry I made a mistake. $R=xsigma_0$. Could you fix the answer?
$endgroup$
– Jackson Hart
Jan 9 at 21:02
add a comment |
$begingroup$
$R; $ becomes $; xsigma_0$.
$dR; $ becomes $; sigma_0dx$.
$sigma_0; $ changes to $; frac{sigma_0}{sigma_0}$.
and
$R_M$ will become $frac{R_M}{sigma_0}$.
the integral is then
$$int_1^{frac{R_M}{sigma_0}}frac{sigma_0 dx}{xsigma_0}=$$
$$int_1^{frac{R_M}{sigma_0}}frac{dx}{x}.$$
$endgroup$
$R; $ becomes $; xsigma_0$.
$dR; $ becomes $; sigma_0dx$.
$sigma_0; $ changes to $; frac{sigma_0}{sigma_0}$.
and
$R_M$ will become $frac{R_M}{sigma_0}$.
the integral is then
$$int_1^{frac{R_M}{sigma_0}}frac{sigma_0 dx}{xsigma_0}=$$
$$int_1^{frac{R_M}{sigma_0}}frac{dx}{x}.$$
edited Jan 9 at 21:07
answered Jan 9 at 20:53
hamam_Abdallahhamam_Abdallah
38k21634
38k21634
$begingroup$
Sorry I made a mistake. $R=xsigma_0$. Could you fix the answer?
$endgroup$
– Jackson Hart
Jan 9 at 21:02
add a comment |
$begingroup$
Sorry I made a mistake. $R=xsigma_0$. Could you fix the answer?
$endgroup$
– Jackson Hart
Jan 9 at 21:02
$begingroup$
Sorry I made a mistake. $R=xsigma_0$. Could you fix the answer?
$endgroup$
– Jackson Hart
Jan 9 at 21:02
$begingroup$
Sorry I made a mistake. $R=xsigma_0$. Could you fix the answer?
$endgroup$
– Jackson Hart
Jan 9 at 21:02
add a comment |
$begingroup$
$R=sigma _0$ implies that $ x= frac {sigma_0}{sigma}$
$R=R_M $implies that $x=frac {R_M}{sigma}$
Thus the new bounds are the old ones divided by $sigma$
$endgroup$
add a comment |
$begingroup$
$R=sigma _0$ implies that $ x= frac {sigma_0}{sigma}$
$R=R_M $implies that $x=frac {R_M}{sigma}$
Thus the new bounds are the old ones divided by $sigma$
$endgroup$
add a comment |
$begingroup$
$R=sigma _0$ implies that $ x= frac {sigma_0}{sigma}$
$R=R_M $implies that $x=frac {R_M}{sigma}$
Thus the new bounds are the old ones divided by $sigma$
$endgroup$
$R=sigma _0$ implies that $ x= frac {sigma_0}{sigma}$
$R=R_M $implies that $x=frac {R_M}{sigma}$
Thus the new bounds are the old ones divided by $sigma$
answered Jan 9 at 21:03
Mohammad Riazi-KermaniMohammad Riazi-Kermani
41.5k42061
41.5k42061
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067918%2fchange-of-variables-in-integral-the-limits-of-y-int-sigma-0r-m-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown