Transformation method of two random variables












0












$begingroup$


My problem:



Let $Y_1$ and $Y_2$ be two random variables and let $f(y_1,y_2)=e^{-y_2}$ from $0leq y_1leq y_2 < infty$ and $0$ otherwise be the joint density function.



(a) Calculate $E(Y_1|Y_2 = y_2)$ and $E(Y_2 |Y_1 = y_1)$.



(b) Calculate the density functions for $E(Y_1|Y_2 )$ and $E(Y_2 |Y_1 )$.



My solution in (a) were easy. I got $E(Y_1|Y_2 = y_2)=y_2/2$ and $E(Y_2 |Y_1 = y_1)=y_1+1$. For (b) I believe I should use transformation method, i.e. I define two random variables as
begin{equation} U=Y_2/2 hspace 0.5cm and hspace 0.5cm V=Y_1+1 end{equation}
With the transformation method I obtain for $U$ the following density function
begin{equation} f_U(u)=2e^{-2u} end{equation}



My problem is now to find $V=Y_1+1$ because I don't have $Y_1$ in my joint density function...










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    My problem:



    Let $Y_1$ and $Y_2$ be two random variables and let $f(y_1,y_2)=e^{-y_2}$ from $0leq y_1leq y_2 < infty$ and $0$ otherwise be the joint density function.



    (a) Calculate $E(Y_1|Y_2 = y_2)$ and $E(Y_2 |Y_1 = y_1)$.



    (b) Calculate the density functions for $E(Y_1|Y_2 )$ and $E(Y_2 |Y_1 )$.



    My solution in (a) were easy. I got $E(Y_1|Y_2 = y_2)=y_2/2$ and $E(Y_2 |Y_1 = y_1)=y_1+1$. For (b) I believe I should use transformation method, i.e. I define two random variables as
    begin{equation} U=Y_2/2 hspace 0.5cm and hspace 0.5cm V=Y_1+1 end{equation}
    With the transformation method I obtain for $U$ the following density function
    begin{equation} f_U(u)=2e^{-2u} end{equation}



    My problem is now to find $V=Y_1+1$ because I don't have $Y_1$ in my joint density function...










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      My problem:



      Let $Y_1$ and $Y_2$ be two random variables and let $f(y_1,y_2)=e^{-y_2}$ from $0leq y_1leq y_2 < infty$ and $0$ otherwise be the joint density function.



      (a) Calculate $E(Y_1|Y_2 = y_2)$ and $E(Y_2 |Y_1 = y_1)$.



      (b) Calculate the density functions for $E(Y_1|Y_2 )$ and $E(Y_2 |Y_1 )$.



      My solution in (a) were easy. I got $E(Y_1|Y_2 = y_2)=y_2/2$ and $E(Y_2 |Y_1 = y_1)=y_1+1$. For (b) I believe I should use transformation method, i.e. I define two random variables as
      begin{equation} U=Y_2/2 hspace 0.5cm and hspace 0.5cm V=Y_1+1 end{equation}
      With the transformation method I obtain for $U$ the following density function
      begin{equation} f_U(u)=2e^{-2u} end{equation}



      My problem is now to find $V=Y_1+1$ because I don't have $Y_1$ in my joint density function...










      share|cite|improve this question









      $endgroup$




      My problem:



      Let $Y_1$ and $Y_2$ be two random variables and let $f(y_1,y_2)=e^{-y_2}$ from $0leq y_1leq y_2 < infty$ and $0$ otherwise be the joint density function.



      (a) Calculate $E(Y_1|Y_2 = y_2)$ and $E(Y_2 |Y_1 = y_1)$.



      (b) Calculate the density functions for $E(Y_1|Y_2 )$ and $E(Y_2 |Y_1 )$.



      My solution in (a) were easy. I got $E(Y_1|Y_2 = y_2)=y_2/2$ and $E(Y_2 |Y_1 = y_1)=y_1+1$. For (b) I believe I should use transformation method, i.e. I define two random variables as
      begin{equation} U=Y_2/2 hspace 0.5cm and hspace 0.5cm V=Y_1+1 end{equation}
      With the transformation method I obtain for $U$ the following density function
      begin{equation} f_U(u)=2e^{-2u} end{equation}



      My problem is now to find $V=Y_1+1$ because I don't have $Y_1$ in my joint density function...







      probability-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 9 at 20:55









      Joey AdamsJoey Adams

      457




      457






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Your formula for $f_U$ is not correct. You first calculate $f_{Y_1}$ and $f_{Y_2}$ as follows: $f_{Y_1}(y_1)=int f(y_1,y_2)dy_2 =int_{y_1}^{infty} e^{-y_2} dy_2=e^{-y_1}$ for $0<y_1<infty$; $f_{Y_2}(y_2)=int f(y_1,y_2)dy_1 =int_{0}^{y_2} e^{-y_2} dy_1=y_2e^{-y_2}$ for $0<y_2<infty$. Using $f_{Y_2}$ we get $f_U(y)=4ye^{-2y}$ for $0<y<infty$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
            $endgroup$
            – Joey Adams
            Jan 10 at 0:05






          • 1




            $begingroup$
            @JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
            $endgroup$
            – Kavi Rama Murthy
            Jan 10 at 0:36










          • $begingroup$
            Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
            $endgroup$
            – Joey Adams
            Jan 10 at 0:39













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067929%2ftransformation-method-of-two-random-variables%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Your formula for $f_U$ is not correct. You first calculate $f_{Y_1}$ and $f_{Y_2}$ as follows: $f_{Y_1}(y_1)=int f(y_1,y_2)dy_2 =int_{y_1}^{infty} e^{-y_2} dy_2=e^{-y_1}$ for $0<y_1<infty$; $f_{Y_2}(y_2)=int f(y_1,y_2)dy_1 =int_{0}^{y_2} e^{-y_2} dy_1=y_2e^{-y_2}$ for $0<y_2<infty$. Using $f_{Y_2}$ we get $f_U(y)=4ye^{-2y}$ for $0<y<infty$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
            $endgroup$
            – Joey Adams
            Jan 10 at 0:05






          • 1




            $begingroup$
            @JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
            $endgroup$
            – Kavi Rama Murthy
            Jan 10 at 0:36










          • $begingroup$
            Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
            $endgroup$
            – Joey Adams
            Jan 10 at 0:39


















          1












          $begingroup$

          Your formula for $f_U$ is not correct. You first calculate $f_{Y_1}$ and $f_{Y_2}$ as follows: $f_{Y_1}(y_1)=int f(y_1,y_2)dy_2 =int_{y_1}^{infty} e^{-y_2} dy_2=e^{-y_1}$ for $0<y_1<infty$; $f_{Y_2}(y_2)=int f(y_1,y_2)dy_1 =int_{0}^{y_2} e^{-y_2} dy_1=y_2e^{-y_2}$ for $0<y_2<infty$. Using $f_{Y_2}$ we get $f_U(y)=4ye^{-2y}$ for $0<y<infty$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
            $endgroup$
            – Joey Adams
            Jan 10 at 0:05






          • 1




            $begingroup$
            @JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
            $endgroup$
            – Kavi Rama Murthy
            Jan 10 at 0:36










          • $begingroup$
            Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
            $endgroup$
            – Joey Adams
            Jan 10 at 0:39
















          1












          1








          1





          $begingroup$

          Your formula for $f_U$ is not correct. You first calculate $f_{Y_1}$ and $f_{Y_2}$ as follows: $f_{Y_1}(y_1)=int f(y_1,y_2)dy_2 =int_{y_1}^{infty} e^{-y_2} dy_2=e^{-y_1}$ for $0<y_1<infty$; $f_{Y_2}(y_2)=int f(y_1,y_2)dy_1 =int_{0}^{y_2} e^{-y_2} dy_1=y_2e^{-y_2}$ for $0<y_2<infty$. Using $f_{Y_2}$ we get $f_U(y)=4ye^{-2y}$ for $0<y<infty$.






          share|cite|improve this answer











          $endgroup$



          Your formula for $f_U$ is not correct. You first calculate $f_{Y_1}$ and $f_{Y_2}$ as follows: $f_{Y_1}(y_1)=int f(y_1,y_2)dy_2 =int_{y_1}^{infty} e^{-y_2} dy_2=e^{-y_1}$ for $0<y_1<infty$; $f_{Y_2}(y_2)=int f(y_1,y_2)dy_1 =int_{0}^{y_2} e^{-y_2} dy_1=y_2e^{-y_2}$ for $0<y_2<infty$. Using $f_{Y_2}$ we get $f_U(y)=4ye^{-2y}$ for $0<y<infty$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 10 at 0:35

























          answered Jan 9 at 23:48









          Kavi Rama MurthyKavi Rama Murthy

          54.4k32055




          54.4k32055












          • $begingroup$
            So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
            $endgroup$
            – Joey Adams
            Jan 10 at 0:05






          • 1




            $begingroup$
            @JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
            $endgroup$
            – Kavi Rama Murthy
            Jan 10 at 0:36










          • $begingroup$
            Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
            $endgroup$
            – Joey Adams
            Jan 10 at 0:39




















          • $begingroup$
            So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
            $endgroup$
            – Joey Adams
            Jan 10 at 0:05






          • 1




            $begingroup$
            @JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
            $endgroup$
            – Kavi Rama Murthy
            Jan 10 at 0:36










          • $begingroup$
            Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
            $endgroup$
            – Joey Adams
            Jan 10 at 0:39


















          $begingroup$
          So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
          $endgroup$
          – Joey Adams
          Jan 10 at 0:05




          $begingroup$
          So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
          $endgroup$
          – Joey Adams
          Jan 10 at 0:05




          1




          1




          $begingroup$
          @JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
          $endgroup$
          – Kavi Rama Murthy
          Jan 10 at 0:36




          $begingroup$
          @JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
          $endgroup$
          – Kavi Rama Murthy
          Jan 10 at 0:36












          $begingroup$
          Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
          $endgroup$
          – Joey Adams
          Jan 10 at 0:39






          $begingroup$
          Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
          $endgroup$
          – Joey Adams
          Jan 10 at 0:39




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067929%2ftransformation-method-of-two-random-variables%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          What does “Dominus providebit” mean?

          The Binding of Isaac: Rebirth/Afterbirth