Transformation method of two random variables
$begingroup$
My problem:
Let $Y_1$ and $Y_2$ be two random variables and let $f(y_1,y_2)=e^{-y_2}$ from $0leq y_1leq y_2 < infty$ and $0$ otherwise be the joint density function.
(a) Calculate $E(Y_1|Y_2 = y_2)$ and $E(Y_2 |Y_1 = y_1)$.
(b) Calculate the density functions for $E(Y_1|Y_2 )$ and $E(Y_2 |Y_1 )$.
My solution in (a) were easy. I got $E(Y_1|Y_2 = y_2)=y_2/2$ and $E(Y_2 |Y_1 = y_1)=y_1+1$. For (b) I believe I should use transformation method, i.e. I define two random variables as
begin{equation} U=Y_2/2 hspace 0.5cm and hspace 0.5cm V=Y_1+1 end{equation}
With the transformation method I obtain for $U$ the following density function
begin{equation} f_U(u)=2e^{-2u} end{equation}
My problem is now to find $V=Y_1+1$ because I don't have $Y_1$ in my joint density function...
probability-theory
$endgroup$
add a comment |
$begingroup$
My problem:
Let $Y_1$ and $Y_2$ be two random variables and let $f(y_1,y_2)=e^{-y_2}$ from $0leq y_1leq y_2 < infty$ and $0$ otherwise be the joint density function.
(a) Calculate $E(Y_1|Y_2 = y_2)$ and $E(Y_2 |Y_1 = y_1)$.
(b) Calculate the density functions for $E(Y_1|Y_2 )$ and $E(Y_2 |Y_1 )$.
My solution in (a) were easy. I got $E(Y_1|Y_2 = y_2)=y_2/2$ and $E(Y_2 |Y_1 = y_1)=y_1+1$. For (b) I believe I should use transformation method, i.e. I define two random variables as
begin{equation} U=Y_2/2 hspace 0.5cm and hspace 0.5cm V=Y_1+1 end{equation}
With the transformation method I obtain for $U$ the following density function
begin{equation} f_U(u)=2e^{-2u} end{equation}
My problem is now to find $V=Y_1+1$ because I don't have $Y_1$ in my joint density function...
probability-theory
$endgroup$
add a comment |
$begingroup$
My problem:
Let $Y_1$ and $Y_2$ be two random variables and let $f(y_1,y_2)=e^{-y_2}$ from $0leq y_1leq y_2 < infty$ and $0$ otherwise be the joint density function.
(a) Calculate $E(Y_1|Y_2 = y_2)$ and $E(Y_2 |Y_1 = y_1)$.
(b) Calculate the density functions for $E(Y_1|Y_2 )$ and $E(Y_2 |Y_1 )$.
My solution in (a) were easy. I got $E(Y_1|Y_2 = y_2)=y_2/2$ and $E(Y_2 |Y_1 = y_1)=y_1+1$. For (b) I believe I should use transformation method, i.e. I define two random variables as
begin{equation} U=Y_2/2 hspace 0.5cm and hspace 0.5cm V=Y_1+1 end{equation}
With the transformation method I obtain for $U$ the following density function
begin{equation} f_U(u)=2e^{-2u} end{equation}
My problem is now to find $V=Y_1+1$ because I don't have $Y_1$ in my joint density function...
probability-theory
$endgroup$
My problem:
Let $Y_1$ and $Y_2$ be two random variables and let $f(y_1,y_2)=e^{-y_2}$ from $0leq y_1leq y_2 < infty$ and $0$ otherwise be the joint density function.
(a) Calculate $E(Y_1|Y_2 = y_2)$ and $E(Y_2 |Y_1 = y_1)$.
(b) Calculate the density functions for $E(Y_1|Y_2 )$ and $E(Y_2 |Y_1 )$.
My solution in (a) were easy. I got $E(Y_1|Y_2 = y_2)=y_2/2$ and $E(Y_2 |Y_1 = y_1)=y_1+1$. For (b) I believe I should use transformation method, i.e. I define two random variables as
begin{equation} U=Y_2/2 hspace 0.5cm and hspace 0.5cm V=Y_1+1 end{equation}
With the transformation method I obtain for $U$ the following density function
begin{equation} f_U(u)=2e^{-2u} end{equation}
My problem is now to find $V=Y_1+1$ because I don't have $Y_1$ in my joint density function...
probability-theory
probability-theory
asked Jan 9 at 20:55
Joey AdamsJoey Adams
457
457
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your formula for $f_U$ is not correct. You first calculate $f_{Y_1}$ and $f_{Y_2}$ as follows: $f_{Y_1}(y_1)=int f(y_1,y_2)dy_2 =int_{y_1}^{infty} e^{-y_2} dy_2=e^{-y_1}$ for $0<y_1<infty$; $f_{Y_2}(y_2)=int f(y_1,y_2)dy_1 =int_{0}^{y_2} e^{-y_2} dy_1=y_2e^{-y_2}$ for $0<y_2<infty$. Using $f_{Y_2}$ we get $f_U(y)=4ye^{-2y}$ for $0<y<infty$.
$endgroup$
$begingroup$
So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
$endgroup$
– Joey Adams
Jan 10 at 0:05
1
$begingroup$
@JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
$endgroup$
– Kavi Rama Murthy
Jan 10 at 0:36
$begingroup$
Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
$endgroup$
– Joey Adams
Jan 10 at 0:39
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067929%2ftransformation-method-of-two-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your formula for $f_U$ is not correct. You first calculate $f_{Y_1}$ and $f_{Y_2}$ as follows: $f_{Y_1}(y_1)=int f(y_1,y_2)dy_2 =int_{y_1}^{infty} e^{-y_2} dy_2=e^{-y_1}$ for $0<y_1<infty$; $f_{Y_2}(y_2)=int f(y_1,y_2)dy_1 =int_{0}^{y_2} e^{-y_2} dy_1=y_2e^{-y_2}$ for $0<y_2<infty$. Using $f_{Y_2}$ we get $f_U(y)=4ye^{-2y}$ for $0<y<infty$.
$endgroup$
$begingroup$
So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
$endgroup$
– Joey Adams
Jan 10 at 0:05
1
$begingroup$
@JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
$endgroup$
– Kavi Rama Murthy
Jan 10 at 0:36
$begingroup$
Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
$endgroup$
– Joey Adams
Jan 10 at 0:39
add a comment |
$begingroup$
Your formula for $f_U$ is not correct. You first calculate $f_{Y_1}$ and $f_{Y_2}$ as follows: $f_{Y_1}(y_1)=int f(y_1,y_2)dy_2 =int_{y_1}^{infty} e^{-y_2} dy_2=e^{-y_1}$ for $0<y_1<infty$; $f_{Y_2}(y_2)=int f(y_1,y_2)dy_1 =int_{0}^{y_2} e^{-y_2} dy_1=y_2e^{-y_2}$ for $0<y_2<infty$. Using $f_{Y_2}$ we get $f_U(y)=4ye^{-2y}$ for $0<y<infty$.
$endgroup$
$begingroup$
So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
$endgroup$
– Joey Adams
Jan 10 at 0:05
1
$begingroup$
@JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
$endgroup$
– Kavi Rama Murthy
Jan 10 at 0:36
$begingroup$
Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
$endgroup$
– Joey Adams
Jan 10 at 0:39
add a comment |
$begingroup$
Your formula for $f_U$ is not correct. You first calculate $f_{Y_1}$ and $f_{Y_2}$ as follows: $f_{Y_1}(y_1)=int f(y_1,y_2)dy_2 =int_{y_1}^{infty} e^{-y_2} dy_2=e^{-y_1}$ for $0<y_1<infty$; $f_{Y_2}(y_2)=int f(y_1,y_2)dy_1 =int_{0}^{y_2} e^{-y_2} dy_1=y_2e^{-y_2}$ for $0<y_2<infty$. Using $f_{Y_2}$ we get $f_U(y)=4ye^{-2y}$ for $0<y<infty$.
$endgroup$
Your formula for $f_U$ is not correct. You first calculate $f_{Y_1}$ and $f_{Y_2}$ as follows: $f_{Y_1}(y_1)=int f(y_1,y_2)dy_2 =int_{y_1}^{infty} e^{-y_2} dy_2=e^{-y_1}$ for $0<y_1<infty$; $f_{Y_2}(y_2)=int f(y_1,y_2)dy_1 =int_{0}^{y_2} e^{-y_2} dy_1=y_2e^{-y_2}$ for $0<y_2<infty$. Using $f_{Y_2}$ we get $f_U(y)=4ye^{-2y}$ for $0<y<infty$.
edited Jan 10 at 0:35
answered Jan 9 at 23:48
Kavi Rama MurthyKavi Rama Murthy
54.4k32055
54.4k32055
$begingroup$
So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
$endgroup$
– Joey Adams
Jan 10 at 0:05
1
$begingroup$
@JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
$endgroup$
– Kavi Rama Murthy
Jan 10 at 0:36
$begingroup$
Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
$endgroup$
– Joey Adams
Jan 10 at 0:39
add a comment |
$begingroup$
So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
$endgroup$
– Joey Adams
Jan 10 at 0:05
1
$begingroup$
@JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
$endgroup$
– Kavi Rama Murthy
Jan 10 at 0:36
$begingroup$
Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
$endgroup$
– Joey Adams
Jan 10 at 0:39
$begingroup$
So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
$endgroup$
– Joey Adams
Jan 10 at 0:05
$begingroup$
So if I use $f_{Y_2}(y_2)=y_2e^{-y_2}$ then I get $f_U(u)=4ue^{-2u}$ and not the same as you. So I'm supposed to use my marginals instead my joint density function.
$endgroup$
– Joey Adams
Jan 10 at 0:05
1
1
$begingroup$
@JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
$endgroup$
– Kavi Rama Murthy
Jan 10 at 0:36
$begingroup$
@JoeyAdams There was a typo. Indeed $f_U(u)=4ue^{-2u}$
$endgroup$
– Kavi Rama Murthy
Jan 10 at 0:36
$begingroup$
Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
$endgroup$
– Joey Adams
Jan 10 at 0:39
$begingroup$
Okay, I see! And for the second one, i.e. $E(Y_2|Y_1)$ I get $f_V(v)=e^{v-1}$
$endgroup$
– Joey Adams
Jan 10 at 0:39
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067929%2ftransformation-method-of-two-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown