Number of integer solutions to Ax + By + Cz = D
How many integer solutions exits for the equations, $Ax + By + Cz = D$, where
$B = (A + 1), C = (A + 2)$, and $x, y, z$ are non-negative i.e $x, y, z, >= 0$
I require a general solution which can be implemented using code as well. We would be given the values of $A, D$.
combinatorics
bumped to the homepage by Community♦ 18 hours ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
How many integer solutions exits for the equations, $Ax + By + Cz = D$, where
$B = (A + 1), C = (A + 2)$, and $x, y, z$ are non-negative i.e $x, y, z, >= 0$
I require a general solution which can be implemented using code as well. We would be given the values of $A, D$.
combinatorics
bumped to the homepage by Community♦ 18 hours ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
What are A, B, C and D? Matrices?
– Dhanvi Sreenivasan
Nov 6 '16 at 7:20
No, A, D are simply numbers, for eg: number of non - negative integer solutions to $3x + 4y + 5z = 12$
– caretaker
Nov 6 '16 at 7:27
add a comment |
How many integer solutions exits for the equations, $Ax + By + Cz = D$, where
$B = (A + 1), C = (A + 2)$, and $x, y, z$ are non-negative i.e $x, y, z, >= 0$
I require a general solution which can be implemented using code as well. We would be given the values of $A, D$.
combinatorics
How many integer solutions exits for the equations, $Ax + By + Cz = D$, where
$B = (A + 1), C = (A + 2)$, and $x, y, z$ are non-negative i.e $x, y, z, >= 0$
I require a general solution which can be implemented using code as well. We would be given the values of $A, D$.
combinatorics
combinatorics
asked Nov 6 '16 at 7:16
caretaker
245
245
bumped to the homepage by Community♦ 18 hours ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
bumped to the homepage by Community♦ 18 hours ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
What are A, B, C and D? Matrices?
– Dhanvi Sreenivasan
Nov 6 '16 at 7:20
No, A, D are simply numbers, for eg: number of non - negative integer solutions to $3x + 4y + 5z = 12$
– caretaker
Nov 6 '16 at 7:27
add a comment |
What are A, B, C and D? Matrices?
– Dhanvi Sreenivasan
Nov 6 '16 at 7:20
No, A, D are simply numbers, for eg: number of non - negative integer solutions to $3x + 4y + 5z = 12$
– caretaker
Nov 6 '16 at 7:27
What are A, B, C and D? Matrices?
– Dhanvi Sreenivasan
Nov 6 '16 at 7:20
What are A, B, C and D? Matrices?
– Dhanvi Sreenivasan
Nov 6 '16 at 7:20
No, A, D are simply numbers, for eg: number of non - negative integer solutions to $3x + 4y + 5z = 12$
– caretaker
Nov 6 '16 at 7:27
No, A, D are simply numbers, for eg: number of non - negative integer solutions to $3x + 4y + 5z = 12$
– caretaker
Nov 6 '16 at 7:27
add a comment |
2 Answers
2
active
oldest
votes
First note that $gcd(A, A + 1, A + 2) = 1 $. Since this gcd while divide $D$ this Diophantine equation will always have solutions. So first solve $Au + (A+1)v = gcd(A, A+1) = 1$. Then solve $(1)w + (A+2)s = gcd(1,A+2) = 1$. After finding the integer solutions(values of $u,v,w$ and $s$) using the Extended Euclidean Algorithm we then have
begin{align}
w + (A +2)s &= 1\
(Au + (A+1)v)w + (A+2)s &= 1\
A(uw) + (A+1)(vw) + (A+2)s &= 1\
A(Duw) + (A+1)(Dvw) + (A +2)(Ds) &= D
end{align}
Thus we have our solutions $x = Duw$, $y = Dvw$ and $z = Ds$.
add a comment |
So, assuming that $A,, D$ are non negative integers
$$
left{ matrix{
0 le x,y,z,A,D; in mathbb Z hfill cr
Ax + left( {A + 1} right)y + left( {A + 2} right)z = D hfill cr} right.
$$
when $A=0$ we are left with $y+2z=D$ and it is easy to see that the number of solutions is
$$
N_{A = 0} = 1 + leftlfloor {{D over 2}} rightrfloor = leftlceil {{{D + 1} over 2}} rightrceil
$$
Taking then $1 le A$, we can write
$$
left{ matrix{
0 le x,y,k,A,D hfill cr
Ax + left( {A + 1} right)y = D - left( {A + 2} right)k hfill cr} right.
$$
and since $gcd left( {A,A + 1} right) = 1$ we can apply to the Popoviciu's Theorem which reads
$$ bbox[lightyellow] {
eqalign{
& p_{left{ {a,b} right}} (n) = left| {,left{ matrix{
0 le x,y,a,b,n in Z hfill cr
gcd (a,b) = 1 hfill cr
ax + by = n hfill cr} right.;} right| = cr
& = {n over {ab}} - left{ {{{b^{,left( { - 1} right)} n} over a}} right} - left{ {{{a^{,left( { - 1} right)} n} over b}} right} + 1 cr}
} tag{1}$$
where:
$left{ x right} $ denotes the fractional part : $left{ x right} = x - leftlfloor x rightrfloor $
and the exponent in brackets denotes the modular inverse
$$
b^{,left( { - 1} right)} b equiv 1;left( {bmod a} right)quad a^{,left( { - 1} right)} a equiv 1;left( {bmod b} right)
$$
In this respect we have
$$
eqalign{
& A^{,left( { - 1} right)} A equiv 1;left( {bmod A + 1} right)quad Rightarrow quad A^{,left( { - 1} right)} = A cr
& left( {A + 1} right)^{,left( { - 1} right)} left( {A + 1} right) equiv 1;left( {bmod A} right)quad Rightarrow
quad left( {A + 1} right)^{,left( { - 1} right)} = 1 cr}
$$
Therefore the Popoviciu's theorem gives
$$
N_{,1 le A} = sumlimits_{k = 0}^{leftlfloor {D/left( {A + 2} right)} rightrfloor } {,left( {{{D - left( {A + 2} right)k} over {Aleft( {A + 1} right)}}
- left{ {{{D - left( {A + 2} right)k} over A}} right} - left{ {{{Aleft( {D - left( {A + 2} right)k} right)} over {A + 1}}} right} + 1} right)}
$$
The terms above can be simplified to some extent. Let's put
$$d=leftlfloor {D/left( {A + 2} right)} rightrfloor $$
Then
$$
eqalign{
& sumlimits_{k = 0}^d {{{D - left( {A + 2} right)k} over {Aleft( {A + 1} right)}} + 1}
= {{D + Aleft( {A + 1} right)} over {Aleft( {A + 1} right)}}left( {d + 1} right) - {{left( {A + 2} right)} over {Aleft( {A + 1} right)}}{{left( {d + 1} right)d} over 2} = cr
& = {{left( {d + 1} right)} over {Aleft( {A + 1} right)}}left( {D - d + Aleft( {A - d/2 + 1} right)} right) cr}
$$
and
$$
eqalign{
& left{ {{{D - left( {A + 2} right)k} over A}} right} + left{ {{{Aleft( {D - left( {A + 2} right)k} right)} over {A + 1}}} right} = cr
& = left{ {{{D - 2k} over A}} right} + left{ {{{Aleft( {D - k} right)} over {A + 1}}} right} cr}
$$
Finally we obtain
$$ bbox[lightyellow] {
eqalign{
& N_{,1 le A} = {{left( {d + 1} right)} over {Aleft( {A + 1} right)}}left( {D - d + Aleft( {A - d/2 + 1} right)} right) + cr
& - sumlimits_{k = 0}^d {left{ {{{D - 2k} over A}} right} + left{ {{{Aleft( {D - k} right)} over {A + 1}}} right}} cr}
} tag{2}$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2001624%2fnumber-of-integer-solutions-to-ax-by-cz-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
First note that $gcd(A, A + 1, A + 2) = 1 $. Since this gcd while divide $D$ this Diophantine equation will always have solutions. So first solve $Au + (A+1)v = gcd(A, A+1) = 1$. Then solve $(1)w + (A+2)s = gcd(1,A+2) = 1$. After finding the integer solutions(values of $u,v,w$ and $s$) using the Extended Euclidean Algorithm we then have
begin{align}
w + (A +2)s &= 1\
(Au + (A+1)v)w + (A+2)s &= 1\
A(uw) + (A+1)(vw) + (A+2)s &= 1\
A(Duw) + (A+1)(Dvw) + (A +2)(Ds) &= D
end{align}
Thus we have our solutions $x = Duw$, $y = Dvw$ and $z = Ds$.
add a comment |
First note that $gcd(A, A + 1, A + 2) = 1 $. Since this gcd while divide $D$ this Diophantine equation will always have solutions. So first solve $Au + (A+1)v = gcd(A, A+1) = 1$. Then solve $(1)w + (A+2)s = gcd(1,A+2) = 1$. After finding the integer solutions(values of $u,v,w$ and $s$) using the Extended Euclidean Algorithm we then have
begin{align}
w + (A +2)s &= 1\
(Au + (A+1)v)w + (A+2)s &= 1\
A(uw) + (A+1)(vw) + (A+2)s &= 1\
A(Duw) + (A+1)(Dvw) + (A +2)(Ds) &= D
end{align}
Thus we have our solutions $x = Duw$, $y = Dvw$ and $z = Ds$.
add a comment |
First note that $gcd(A, A + 1, A + 2) = 1 $. Since this gcd while divide $D$ this Diophantine equation will always have solutions. So first solve $Au + (A+1)v = gcd(A, A+1) = 1$. Then solve $(1)w + (A+2)s = gcd(1,A+2) = 1$. After finding the integer solutions(values of $u,v,w$ and $s$) using the Extended Euclidean Algorithm we then have
begin{align}
w + (A +2)s &= 1\
(Au + (A+1)v)w + (A+2)s &= 1\
A(uw) + (A+1)(vw) + (A+2)s &= 1\
A(Duw) + (A+1)(Dvw) + (A +2)(Ds) &= D
end{align}
Thus we have our solutions $x = Duw$, $y = Dvw$ and $z = Ds$.
First note that $gcd(A, A + 1, A + 2) = 1 $. Since this gcd while divide $D$ this Diophantine equation will always have solutions. So first solve $Au + (A+1)v = gcd(A, A+1) = 1$. Then solve $(1)w + (A+2)s = gcd(1,A+2) = 1$. After finding the integer solutions(values of $u,v,w$ and $s$) using the Extended Euclidean Algorithm we then have
begin{align}
w + (A +2)s &= 1\
(Au + (A+1)v)w + (A+2)s &= 1\
A(uw) + (A+1)(vw) + (A+2)s &= 1\
A(Duw) + (A+1)(Dvw) + (A +2)(Ds) &= D
end{align}
Thus we have our solutions $x = Duw$, $y = Dvw$ and $z = Ds$.
answered Nov 6 '16 at 8:38
Jeevan Devaranjan
2,227516
2,227516
add a comment |
add a comment |
So, assuming that $A,, D$ are non negative integers
$$
left{ matrix{
0 le x,y,z,A,D; in mathbb Z hfill cr
Ax + left( {A + 1} right)y + left( {A + 2} right)z = D hfill cr} right.
$$
when $A=0$ we are left with $y+2z=D$ and it is easy to see that the number of solutions is
$$
N_{A = 0} = 1 + leftlfloor {{D over 2}} rightrfloor = leftlceil {{{D + 1} over 2}} rightrceil
$$
Taking then $1 le A$, we can write
$$
left{ matrix{
0 le x,y,k,A,D hfill cr
Ax + left( {A + 1} right)y = D - left( {A + 2} right)k hfill cr} right.
$$
and since $gcd left( {A,A + 1} right) = 1$ we can apply to the Popoviciu's Theorem which reads
$$ bbox[lightyellow] {
eqalign{
& p_{left{ {a,b} right}} (n) = left| {,left{ matrix{
0 le x,y,a,b,n in Z hfill cr
gcd (a,b) = 1 hfill cr
ax + by = n hfill cr} right.;} right| = cr
& = {n over {ab}} - left{ {{{b^{,left( { - 1} right)} n} over a}} right} - left{ {{{a^{,left( { - 1} right)} n} over b}} right} + 1 cr}
} tag{1}$$
where:
$left{ x right} $ denotes the fractional part : $left{ x right} = x - leftlfloor x rightrfloor $
and the exponent in brackets denotes the modular inverse
$$
b^{,left( { - 1} right)} b equiv 1;left( {bmod a} right)quad a^{,left( { - 1} right)} a equiv 1;left( {bmod b} right)
$$
In this respect we have
$$
eqalign{
& A^{,left( { - 1} right)} A equiv 1;left( {bmod A + 1} right)quad Rightarrow quad A^{,left( { - 1} right)} = A cr
& left( {A + 1} right)^{,left( { - 1} right)} left( {A + 1} right) equiv 1;left( {bmod A} right)quad Rightarrow
quad left( {A + 1} right)^{,left( { - 1} right)} = 1 cr}
$$
Therefore the Popoviciu's theorem gives
$$
N_{,1 le A} = sumlimits_{k = 0}^{leftlfloor {D/left( {A + 2} right)} rightrfloor } {,left( {{{D - left( {A + 2} right)k} over {Aleft( {A + 1} right)}}
- left{ {{{D - left( {A + 2} right)k} over A}} right} - left{ {{{Aleft( {D - left( {A + 2} right)k} right)} over {A + 1}}} right} + 1} right)}
$$
The terms above can be simplified to some extent. Let's put
$$d=leftlfloor {D/left( {A + 2} right)} rightrfloor $$
Then
$$
eqalign{
& sumlimits_{k = 0}^d {{{D - left( {A + 2} right)k} over {Aleft( {A + 1} right)}} + 1}
= {{D + Aleft( {A + 1} right)} over {Aleft( {A + 1} right)}}left( {d + 1} right) - {{left( {A + 2} right)} over {Aleft( {A + 1} right)}}{{left( {d + 1} right)d} over 2} = cr
& = {{left( {d + 1} right)} over {Aleft( {A + 1} right)}}left( {D - d + Aleft( {A - d/2 + 1} right)} right) cr}
$$
and
$$
eqalign{
& left{ {{{D - left( {A + 2} right)k} over A}} right} + left{ {{{Aleft( {D - left( {A + 2} right)k} right)} over {A + 1}}} right} = cr
& = left{ {{{D - 2k} over A}} right} + left{ {{{Aleft( {D - k} right)} over {A + 1}}} right} cr}
$$
Finally we obtain
$$ bbox[lightyellow] {
eqalign{
& N_{,1 le A} = {{left( {d + 1} right)} over {Aleft( {A + 1} right)}}left( {D - d + Aleft( {A - d/2 + 1} right)} right) + cr
& - sumlimits_{k = 0}^d {left{ {{{D - 2k} over A}} right} + left{ {{{Aleft( {D - k} right)} over {A + 1}}} right}} cr}
} tag{2}$$
add a comment |
So, assuming that $A,, D$ are non negative integers
$$
left{ matrix{
0 le x,y,z,A,D; in mathbb Z hfill cr
Ax + left( {A + 1} right)y + left( {A + 2} right)z = D hfill cr} right.
$$
when $A=0$ we are left with $y+2z=D$ and it is easy to see that the number of solutions is
$$
N_{A = 0} = 1 + leftlfloor {{D over 2}} rightrfloor = leftlceil {{{D + 1} over 2}} rightrceil
$$
Taking then $1 le A$, we can write
$$
left{ matrix{
0 le x,y,k,A,D hfill cr
Ax + left( {A + 1} right)y = D - left( {A + 2} right)k hfill cr} right.
$$
and since $gcd left( {A,A + 1} right) = 1$ we can apply to the Popoviciu's Theorem which reads
$$ bbox[lightyellow] {
eqalign{
& p_{left{ {a,b} right}} (n) = left| {,left{ matrix{
0 le x,y,a,b,n in Z hfill cr
gcd (a,b) = 1 hfill cr
ax + by = n hfill cr} right.;} right| = cr
& = {n over {ab}} - left{ {{{b^{,left( { - 1} right)} n} over a}} right} - left{ {{{a^{,left( { - 1} right)} n} over b}} right} + 1 cr}
} tag{1}$$
where:
$left{ x right} $ denotes the fractional part : $left{ x right} = x - leftlfloor x rightrfloor $
and the exponent in brackets denotes the modular inverse
$$
b^{,left( { - 1} right)} b equiv 1;left( {bmod a} right)quad a^{,left( { - 1} right)} a equiv 1;left( {bmod b} right)
$$
In this respect we have
$$
eqalign{
& A^{,left( { - 1} right)} A equiv 1;left( {bmod A + 1} right)quad Rightarrow quad A^{,left( { - 1} right)} = A cr
& left( {A + 1} right)^{,left( { - 1} right)} left( {A + 1} right) equiv 1;left( {bmod A} right)quad Rightarrow
quad left( {A + 1} right)^{,left( { - 1} right)} = 1 cr}
$$
Therefore the Popoviciu's theorem gives
$$
N_{,1 le A} = sumlimits_{k = 0}^{leftlfloor {D/left( {A + 2} right)} rightrfloor } {,left( {{{D - left( {A + 2} right)k} over {Aleft( {A + 1} right)}}
- left{ {{{D - left( {A + 2} right)k} over A}} right} - left{ {{{Aleft( {D - left( {A + 2} right)k} right)} over {A + 1}}} right} + 1} right)}
$$
The terms above can be simplified to some extent. Let's put
$$d=leftlfloor {D/left( {A + 2} right)} rightrfloor $$
Then
$$
eqalign{
& sumlimits_{k = 0}^d {{{D - left( {A + 2} right)k} over {Aleft( {A + 1} right)}} + 1}
= {{D + Aleft( {A + 1} right)} over {Aleft( {A + 1} right)}}left( {d + 1} right) - {{left( {A + 2} right)} over {Aleft( {A + 1} right)}}{{left( {d + 1} right)d} over 2} = cr
& = {{left( {d + 1} right)} over {Aleft( {A + 1} right)}}left( {D - d + Aleft( {A - d/2 + 1} right)} right) cr}
$$
and
$$
eqalign{
& left{ {{{D - left( {A + 2} right)k} over A}} right} + left{ {{{Aleft( {D - left( {A + 2} right)k} right)} over {A + 1}}} right} = cr
& = left{ {{{D - 2k} over A}} right} + left{ {{{Aleft( {D - k} right)} over {A + 1}}} right} cr}
$$
Finally we obtain
$$ bbox[lightyellow] {
eqalign{
& N_{,1 le A} = {{left( {d + 1} right)} over {Aleft( {A + 1} right)}}left( {D - d + Aleft( {A - d/2 + 1} right)} right) + cr
& - sumlimits_{k = 0}^d {left{ {{{D - 2k} over A}} right} + left{ {{{Aleft( {D - k} right)} over {A + 1}}} right}} cr}
} tag{2}$$
add a comment |
So, assuming that $A,, D$ are non negative integers
$$
left{ matrix{
0 le x,y,z,A,D; in mathbb Z hfill cr
Ax + left( {A + 1} right)y + left( {A + 2} right)z = D hfill cr} right.
$$
when $A=0$ we are left with $y+2z=D$ and it is easy to see that the number of solutions is
$$
N_{A = 0} = 1 + leftlfloor {{D over 2}} rightrfloor = leftlceil {{{D + 1} over 2}} rightrceil
$$
Taking then $1 le A$, we can write
$$
left{ matrix{
0 le x,y,k,A,D hfill cr
Ax + left( {A + 1} right)y = D - left( {A + 2} right)k hfill cr} right.
$$
and since $gcd left( {A,A + 1} right) = 1$ we can apply to the Popoviciu's Theorem which reads
$$ bbox[lightyellow] {
eqalign{
& p_{left{ {a,b} right}} (n) = left| {,left{ matrix{
0 le x,y,a,b,n in Z hfill cr
gcd (a,b) = 1 hfill cr
ax + by = n hfill cr} right.;} right| = cr
& = {n over {ab}} - left{ {{{b^{,left( { - 1} right)} n} over a}} right} - left{ {{{a^{,left( { - 1} right)} n} over b}} right} + 1 cr}
} tag{1}$$
where:
$left{ x right} $ denotes the fractional part : $left{ x right} = x - leftlfloor x rightrfloor $
and the exponent in brackets denotes the modular inverse
$$
b^{,left( { - 1} right)} b equiv 1;left( {bmod a} right)quad a^{,left( { - 1} right)} a equiv 1;left( {bmod b} right)
$$
In this respect we have
$$
eqalign{
& A^{,left( { - 1} right)} A equiv 1;left( {bmod A + 1} right)quad Rightarrow quad A^{,left( { - 1} right)} = A cr
& left( {A + 1} right)^{,left( { - 1} right)} left( {A + 1} right) equiv 1;left( {bmod A} right)quad Rightarrow
quad left( {A + 1} right)^{,left( { - 1} right)} = 1 cr}
$$
Therefore the Popoviciu's theorem gives
$$
N_{,1 le A} = sumlimits_{k = 0}^{leftlfloor {D/left( {A + 2} right)} rightrfloor } {,left( {{{D - left( {A + 2} right)k} over {Aleft( {A + 1} right)}}
- left{ {{{D - left( {A + 2} right)k} over A}} right} - left{ {{{Aleft( {D - left( {A + 2} right)k} right)} over {A + 1}}} right} + 1} right)}
$$
The terms above can be simplified to some extent. Let's put
$$d=leftlfloor {D/left( {A + 2} right)} rightrfloor $$
Then
$$
eqalign{
& sumlimits_{k = 0}^d {{{D - left( {A + 2} right)k} over {Aleft( {A + 1} right)}} + 1}
= {{D + Aleft( {A + 1} right)} over {Aleft( {A + 1} right)}}left( {d + 1} right) - {{left( {A + 2} right)} over {Aleft( {A + 1} right)}}{{left( {d + 1} right)d} over 2} = cr
& = {{left( {d + 1} right)} over {Aleft( {A + 1} right)}}left( {D - d + Aleft( {A - d/2 + 1} right)} right) cr}
$$
and
$$
eqalign{
& left{ {{{D - left( {A + 2} right)k} over A}} right} + left{ {{{Aleft( {D - left( {A + 2} right)k} right)} over {A + 1}}} right} = cr
& = left{ {{{D - 2k} over A}} right} + left{ {{{Aleft( {D - k} right)} over {A + 1}}} right} cr}
$$
Finally we obtain
$$ bbox[lightyellow] {
eqalign{
& N_{,1 le A} = {{left( {d + 1} right)} over {Aleft( {A + 1} right)}}left( {D - d + Aleft( {A - d/2 + 1} right)} right) + cr
& - sumlimits_{k = 0}^d {left{ {{{D - 2k} over A}} right} + left{ {{{Aleft( {D - k} right)} over {A + 1}}} right}} cr}
} tag{2}$$
So, assuming that $A,, D$ are non negative integers
$$
left{ matrix{
0 le x,y,z,A,D; in mathbb Z hfill cr
Ax + left( {A + 1} right)y + left( {A + 2} right)z = D hfill cr} right.
$$
when $A=0$ we are left with $y+2z=D$ and it is easy to see that the number of solutions is
$$
N_{A = 0} = 1 + leftlfloor {{D over 2}} rightrfloor = leftlceil {{{D + 1} over 2}} rightrceil
$$
Taking then $1 le A$, we can write
$$
left{ matrix{
0 le x,y,k,A,D hfill cr
Ax + left( {A + 1} right)y = D - left( {A + 2} right)k hfill cr} right.
$$
and since $gcd left( {A,A + 1} right) = 1$ we can apply to the Popoviciu's Theorem which reads
$$ bbox[lightyellow] {
eqalign{
& p_{left{ {a,b} right}} (n) = left| {,left{ matrix{
0 le x,y,a,b,n in Z hfill cr
gcd (a,b) = 1 hfill cr
ax + by = n hfill cr} right.;} right| = cr
& = {n over {ab}} - left{ {{{b^{,left( { - 1} right)} n} over a}} right} - left{ {{{a^{,left( { - 1} right)} n} over b}} right} + 1 cr}
} tag{1}$$
where:
$left{ x right} $ denotes the fractional part : $left{ x right} = x - leftlfloor x rightrfloor $
and the exponent in brackets denotes the modular inverse
$$
b^{,left( { - 1} right)} b equiv 1;left( {bmod a} right)quad a^{,left( { - 1} right)} a equiv 1;left( {bmod b} right)
$$
In this respect we have
$$
eqalign{
& A^{,left( { - 1} right)} A equiv 1;left( {bmod A + 1} right)quad Rightarrow quad A^{,left( { - 1} right)} = A cr
& left( {A + 1} right)^{,left( { - 1} right)} left( {A + 1} right) equiv 1;left( {bmod A} right)quad Rightarrow
quad left( {A + 1} right)^{,left( { - 1} right)} = 1 cr}
$$
Therefore the Popoviciu's theorem gives
$$
N_{,1 le A} = sumlimits_{k = 0}^{leftlfloor {D/left( {A + 2} right)} rightrfloor } {,left( {{{D - left( {A + 2} right)k} over {Aleft( {A + 1} right)}}
- left{ {{{D - left( {A + 2} right)k} over A}} right} - left{ {{{Aleft( {D - left( {A + 2} right)k} right)} over {A + 1}}} right} + 1} right)}
$$
The terms above can be simplified to some extent. Let's put
$$d=leftlfloor {D/left( {A + 2} right)} rightrfloor $$
Then
$$
eqalign{
& sumlimits_{k = 0}^d {{{D - left( {A + 2} right)k} over {Aleft( {A + 1} right)}} + 1}
= {{D + Aleft( {A + 1} right)} over {Aleft( {A + 1} right)}}left( {d + 1} right) - {{left( {A + 2} right)} over {Aleft( {A + 1} right)}}{{left( {d + 1} right)d} over 2} = cr
& = {{left( {d + 1} right)} over {Aleft( {A + 1} right)}}left( {D - d + Aleft( {A - d/2 + 1} right)} right) cr}
$$
and
$$
eqalign{
& left{ {{{D - left( {A + 2} right)k} over A}} right} + left{ {{{Aleft( {D - left( {A + 2} right)k} right)} over {A + 1}}} right} = cr
& = left{ {{{D - 2k} over A}} right} + left{ {{{Aleft( {D - k} right)} over {A + 1}}} right} cr}
$$
Finally we obtain
$$ bbox[lightyellow] {
eqalign{
& N_{,1 le A} = {{left( {d + 1} right)} over {Aleft( {A + 1} right)}}left( {D - d + Aleft( {A - d/2 + 1} right)} right) + cr
& - sumlimits_{k = 0}^d {left{ {{{D - 2k} over A}} right} + left{ {{{Aleft( {D - k} right)} over {A + 1}}} right}} cr}
} tag{2}$$
answered Oct 26 '18 at 22:00
G Cab
18k31237
18k31237
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2001624%2fnumber-of-integer-solutions-to-ax-by-cz-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What are A, B, C and D? Matrices?
– Dhanvi Sreenivasan
Nov 6 '16 at 7:20
No, A, D are simply numbers, for eg: number of non - negative integer solutions to $3x + 4y + 5z = 12$
– caretaker
Nov 6 '16 at 7:27