Computation of tensor product
Let $k$ be a field.
Consider the map $k[X,X^{-1},Y, Y^{-1}] to k[T, T^{-1}] $ where $X to T$ and
$Y to T$.
I'm interested in computing the tensor product
$ k[T,T^{-1}] otimes_{k[X,X^{-1},Y, Y^{-1}]} k[X^{1/n},Y^{1/n},X^{-1/n},Y^{-1/n}] $.
I'm not sure how to proceed with this computation. Any help would be appreciated
abstract-algebra tensor-products
add a comment |
Let $k$ be a field.
Consider the map $k[X,X^{-1},Y, Y^{-1}] to k[T, T^{-1}] $ where $X to T$ and
$Y to T$.
I'm interested in computing the tensor product
$ k[T,T^{-1}] otimes_{k[X,X^{-1},Y, Y^{-1}]} k[X^{1/n},Y^{1/n},X^{-1/n},Y^{-1/n}] $.
I'm not sure how to proceed with this computation. Any help would be appreciated
abstract-algebra tensor-products
add a comment |
Let $k$ be a field.
Consider the map $k[X,X^{-1},Y, Y^{-1}] to k[T, T^{-1}] $ where $X to T$ and
$Y to T$.
I'm interested in computing the tensor product
$ k[T,T^{-1}] otimes_{k[X,X^{-1},Y, Y^{-1}]} k[X^{1/n},Y^{1/n},X^{-1/n},Y^{-1/n}] $.
I'm not sure how to proceed with this computation. Any help would be appreciated
abstract-algebra tensor-products
Let $k$ be a field.
Consider the map $k[X,X^{-1},Y, Y^{-1}] to k[T, T^{-1}] $ where $X to T$ and
$Y to T$.
I'm interested in computing the tensor product
$ k[T,T^{-1}] otimes_{k[X,X^{-1},Y, Y^{-1}]} k[X^{1/n},Y^{1/n},X^{-1/n},Y^{-1/n}] $.
I'm not sure how to proceed with this computation. Any help would be appreciated
abstract-algebra tensor-products
abstract-algebra tensor-products
asked 16 hours ago
grontim
308110
308110
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Use the lemma $R/I otimes_R S cong S/IS$, and then simplify.
Capital variables are very easy to mistype, so I'll use lower case.
Let $R=k[x,y,x^{-1},y^{-1}]cong k[x,y,z,w]/(xz-1,yw-1)$, then $k[t,t^{-1}]cong R/(x-y)$, since then $z-w = (xzw-w)-(yzw-z)$ is contained in the ideal automatically. Also $S:=k[x^{1/n},y^{1/n},x^{-1/n},y^{-1/n}]cong R[a,b]/(a^n-x,b^n-y)$.
Thus $$k[t,t^{-1}]otimes_R Scong R/(x-y)otimes_R R[a,b]/(a^n-x,b^n-y)$$
$$cong R[a,b]/(a^n-x,b^n-y,x-y)$$
$$cong k[x,y,z,w,a,b]/(xz-1,yw-1,a^n-x,b^n-y,x-y)$$
$$cong k[x,z,a,b]/(xz-1,a^n-x,b^n-x)$$
$$cong k[a,b,u]/(a^n-b^n,au-1)$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061592%2fcomputation-of-tensor-product%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Use the lemma $R/I otimes_R S cong S/IS$, and then simplify.
Capital variables are very easy to mistype, so I'll use lower case.
Let $R=k[x,y,x^{-1},y^{-1}]cong k[x,y,z,w]/(xz-1,yw-1)$, then $k[t,t^{-1}]cong R/(x-y)$, since then $z-w = (xzw-w)-(yzw-z)$ is contained in the ideal automatically. Also $S:=k[x^{1/n},y^{1/n},x^{-1/n},y^{-1/n}]cong R[a,b]/(a^n-x,b^n-y)$.
Thus $$k[t,t^{-1}]otimes_R Scong R/(x-y)otimes_R R[a,b]/(a^n-x,b^n-y)$$
$$cong R[a,b]/(a^n-x,b^n-y,x-y)$$
$$cong k[x,y,z,w,a,b]/(xz-1,yw-1,a^n-x,b^n-y,x-y)$$
$$cong k[x,z,a,b]/(xz-1,a^n-x,b^n-x)$$
$$cong k[a,b,u]/(a^n-b^n,au-1)$$
add a comment |
Use the lemma $R/I otimes_R S cong S/IS$, and then simplify.
Capital variables are very easy to mistype, so I'll use lower case.
Let $R=k[x,y,x^{-1},y^{-1}]cong k[x,y,z,w]/(xz-1,yw-1)$, then $k[t,t^{-1}]cong R/(x-y)$, since then $z-w = (xzw-w)-(yzw-z)$ is contained in the ideal automatically. Also $S:=k[x^{1/n},y^{1/n},x^{-1/n},y^{-1/n}]cong R[a,b]/(a^n-x,b^n-y)$.
Thus $$k[t,t^{-1}]otimes_R Scong R/(x-y)otimes_R R[a,b]/(a^n-x,b^n-y)$$
$$cong R[a,b]/(a^n-x,b^n-y,x-y)$$
$$cong k[x,y,z,w,a,b]/(xz-1,yw-1,a^n-x,b^n-y,x-y)$$
$$cong k[x,z,a,b]/(xz-1,a^n-x,b^n-x)$$
$$cong k[a,b,u]/(a^n-b^n,au-1)$$
add a comment |
Use the lemma $R/I otimes_R S cong S/IS$, and then simplify.
Capital variables are very easy to mistype, so I'll use lower case.
Let $R=k[x,y,x^{-1},y^{-1}]cong k[x,y,z,w]/(xz-1,yw-1)$, then $k[t,t^{-1}]cong R/(x-y)$, since then $z-w = (xzw-w)-(yzw-z)$ is contained in the ideal automatically. Also $S:=k[x^{1/n},y^{1/n},x^{-1/n},y^{-1/n}]cong R[a,b]/(a^n-x,b^n-y)$.
Thus $$k[t,t^{-1}]otimes_R Scong R/(x-y)otimes_R R[a,b]/(a^n-x,b^n-y)$$
$$cong R[a,b]/(a^n-x,b^n-y,x-y)$$
$$cong k[x,y,z,w,a,b]/(xz-1,yw-1,a^n-x,b^n-y,x-y)$$
$$cong k[x,z,a,b]/(xz-1,a^n-x,b^n-x)$$
$$cong k[a,b,u]/(a^n-b^n,au-1)$$
Use the lemma $R/I otimes_R S cong S/IS$, and then simplify.
Capital variables are very easy to mistype, so I'll use lower case.
Let $R=k[x,y,x^{-1},y^{-1}]cong k[x,y,z,w]/(xz-1,yw-1)$, then $k[t,t^{-1}]cong R/(x-y)$, since then $z-w = (xzw-w)-(yzw-z)$ is contained in the ideal automatically. Also $S:=k[x^{1/n},y^{1/n},x^{-1/n},y^{-1/n}]cong R[a,b]/(a^n-x,b^n-y)$.
Thus $$k[t,t^{-1}]otimes_R Scong R/(x-y)otimes_R R[a,b]/(a^n-x,b^n-y)$$
$$cong R[a,b]/(a^n-x,b^n-y,x-y)$$
$$cong k[x,y,z,w,a,b]/(xz-1,yw-1,a^n-x,b^n-y,x-y)$$
$$cong k[x,z,a,b]/(xz-1,a^n-x,b^n-x)$$
$$cong k[a,b,u]/(a^n-b^n,au-1)$$
answered 9 hours ago
jgon
13.1k21941
13.1k21941
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061592%2fcomputation-of-tensor-product%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown