Find the limit of $e^x/2^x$ as $x$ approaches infinity












2












$begingroup$


I am trying to find the asymptotic relation between $e^x$ and $2^x$. I tried to use limit comparison: $$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$



I tried to use L'Hopital's rule:



$$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
$$=lim_{xtoinfty}left(frac{e^x}{ln(2) cdot 2^x}right)$$



which doesn't really help. Is there any way to compute this limit? Thanks!










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Try using $a^x=e^{xln(a)}$
    $endgroup$
    – nathan.j.mcdougall
    Jan 18 at 3:22








  • 3




    $begingroup$
    $frac{e}{2}gt 1$
    $endgroup$
    – John Douma
    Jan 18 at 3:28






  • 2




    $begingroup$
    Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
    $endgroup$
    – MJD
    Jan 18 at 3:32


















2












$begingroup$


I am trying to find the asymptotic relation between $e^x$ and $2^x$. I tried to use limit comparison: $$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$



I tried to use L'Hopital's rule:



$$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
$$=lim_{xtoinfty}left(frac{e^x}{ln(2) cdot 2^x}right)$$



which doesn't really help. Is there any way to compute this limit? Thanks!










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Try using $a^x=e^{xln(a)}$
    $endgroup$
    – nathan.j.mcdougall
    Jan 18 at 3:22








  • 3




    $begingroup$
    $frac{e}{2}gt 1$
    $endgroup$
    – John Douma
    Jan 18 at 3:28






  • 2




    $begingroup$
    Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
    $endgroup$
    – MJD
    Jan 18 at 3:32
















2












2








2





$begingroup$


I am trying to find the asymptotic relation between $e^x$ and $2^x$. I tried to use limit comparison: $$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$



I tried to use L'Hopital's rule:



$$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
$$=lim_{xtoinfty}left(frac{e^x}{ln(2) cdot 2^x}right)$$



which doesn't really help. Is there any way to compute this limit? Thanks!










share|cite|improve this question











$endgroup$




I am trying to find the asymptotic relation between $e^x$ and $2^x$. I tried to use limit comparison: $$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$



I tried to use L'Hopital's rule:



$$lim_{xtoinfty}left(frac{e^x}{2^x}right)$$
$$=lim_{xtoinfty}left(frac{e^x}{ln(2) cdot 2^x}right)$$



which doesn't really help. Is there any way to compute this limit? Thanks!







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 21:08









Antonio Vargas

20.7k245111




20.7k245111










asked Jan 18 at 3:20









Yifei HeYifei He

1286




1286








  • 3




    $begingroup$
    Try using $a^x=e^{xln(a)}$
    $endgroup$
    – nathan.j.mcdougall
    Jan 18 at 3:22








  • 3




    $begingroup$
    $frac{e}{2}gt 1$
    $endgroup$
    – John Douma
    Jan 18 at 3:28






  • 2




    $begingroup$
    Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
    $endgroup$
    – MJD
    Jan 18 at 3:32
















  • 3




    $begingroup$
    Try using $a^x=e^{xln(a)}$
    $endgroup$
    – nathan.j.mcdougall
    Jan 18 at 3:22








  • 3




    $begingroup$
    $frac{e}{2}gt 1$
    $endgroup$
    – John Douma
    Jan 18 at 3:28






  • 2




    $begingroup$
    Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
    $endgroup$
    – MJD
    Jan 18 at 3:32










3




3




$begingroup$
Try using $a^x=e^{xln(a)}$
$endgroup$
– nathan.j.mcdougall
Jan 18 at 3:22






$begingroup$
Try using $a^x=e^{xln(a)}$
$endgroup$
– nathan.j.mcdougall
Jan 18 at 3:22






3




3




$begingroup$
$frac{e}{2}gt 1$
$endgroup$
– John Douma
Jan 18 at 3:28




$begingroup$
$frac{e}{2}gt 1$
$endgroup$
– John Douma
Jan 18 at 3:28




2




2




$begingroup$
Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
$endgroup$
– MJD
Jan 18 at 3:32






$begingroup$
Your L'Hospital's rule approach actually works. Say the limit is $L$. You showed $L=frac1{ln2}L$, so the limit, if it exists, is zero. But it obviously isn't zero, so...
$endgroup$
– MJD
Jan 18 at 3:32












2 Answers
2






active

oldest

votes


















5












$begingroup$

Note that



$$lim_{x to infty} left(cfrac{e^x}{2^x}right) = lim_{x to infty} left(cfrac{e}{2}right)^x = infty tag{1}label{eq1}$$



because $e > 2$ so $frac{e}{2} > 1$.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Yeah, it can't get any simpler than this approach.
    $endgroup$
    – Randall
    Jan 18 at 3:29



















3












$begingroup$

HINT



$$frac{e^x}{2^x}=frac{e^x}{e^{xln2}}=e^{x(1-ln 2)}$$



Then:



$$lim_{xtoinfty}{x(1-ln 2)}= ?$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077793%2ffind-the-limit-of-ex-2x-as-x-approaches-infinity%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Note that



    $$lim_{x to infty} left(cfrac{e^x}{2^x}right) = lim_{x to infty} left(cfrac{e}{2}right)^x = infty tag{1}label{eq1}$$



    because $e > 2$ so $frac{e}{2} > 1$.






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Yeah, it can't get any simpler than this approach.
      $endgroup$
      – Randall
      Jan 18 at 3:29
















    5












    $begingroup$

    Note that



    $$lim_{x to infty} left(cfrac{e^x}{2^x}right) = lim_{x to infty} left(cfrac{e}{2}right)^x = infty tag{1}label{eq1}$$



    because $e > 2$ so $frac{e}{2} > 1$.






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Yeah, it can't get any simpler than this approach.
      $endgroup$
      – Randall
      Jan 18 at 3:29














    5












    5








    5





    $begingroup$

    Note that



    $$lim_{x to infty} left(cfrac{e^x}{2^x}right) = lim_{x to infty} left(cfrac{e}{2}right)^x = infty tag{1}label{eq1}$$



    because $e > 2$ so $frac{e}{2} > 1$.






    share|cite|improve this answer









    $endgroup$



    Note that



    $$lim_{x to infty} left(cfrac{e^x}{2^x}right) = lim_{x to infty} left(cfrac{e}{2}right)^x = infty tag{1}label{eq1}$$



    because $e > 2$ so $frac{e}{2} > 1$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 18 at 3:28









    John OmielanJohn Omielan

    2,626212




    2,626212








    • 1




      $begingroup$
      Yeah, it can't get any simpler than this approach.
      $endgroup$
      – Randall
      Jan 18 at 3:29














    • 1




      $begingroup$
      Yeah, it can't get any simpler than this approach.
      $endgroup$
      – Randall
      Jan 18 at 3:29








    1




    1




    $begingroup$
    Yeah, it can't get any simpler than this approach.
    $endgroup$
    – Randall
    Jan 18 at 3:29




    $begingroup$
    Yeah, it can't get any simpler than this approach.
    $endgroup$
    – Randall
    Jan 18 at 3:29











    3












    $begingroup$

    HINT



    $$frac{e^x}{2^x}=frac{e^x}{e^{xln2}}=e^{x(1-ln 2)}$$



    Then:



    $$lim_{xtoinfty}{x(1-ln 2)}= ?$$






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      HINT



      $$frac{e^x}{2^x}=frac{e^x}{e^{xln2}}=e^{x(1-ln 2)}$$



      Then:



      $$lim_{xtoinfty}{x(1-ln 2)}= ?$$






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        HINT



        $$frac{e^x}{2^x}=frac{e^x}{e^{xln2}}=e^{x(1-ln 2)}$$



        Then:



        $$lim_{xtoinfty}{x(1-ln 2)}= ?$$






        share|cite|improve this answer









        $endgroup$



        HINT



        $$frac{e^x}{2^x}=frac{e^x}{e^{xln2}}=e^{x(1-ln 2)}$$



        Then:



        $$lim_{xtoinfty}{x(1-ln 2)}= ?$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 18 at 3:26









        Rhys HughesRhys Hughes

        6,4041530




        6,4041530






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077793%2ffind-the-limit-of-ex-2x-as-x-approaches-infinity%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            Dobbiaco