$(D^5-D)y = 12e^x$ using exponential shift












0












$begingroup$


The equation is $$(D^5-D)y = 12e^x$$



Here, the general solution of homogenous (D^5-D)y=0 is $y_g = c_1 + c_2 cos x + c_3 sin x + c_4 e^x + c_5 e^{-x}$. Now I can apply two methods:




  1. Assume particular solution to be $Axe^x$ and solve. This is linearly independant from $y_g$. But finding $D^5$ can be hectic.


  2. Use exponential shift:



$$(D^5-D)y = 12e^x\
y = 12 e^xfrac{1}{(D+1)^5-(D+1)}(1) \
= 12 e^xfrac{1}{(D+1)^4-1}(1)\
= 12e^x (1+(D+1)^4 + ....)$$



This gives strange answer. What is the proper method for this?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    The equation is $$(D^5-D)y = 12e^x$$



    Here, the general solution of homogenous (D^5-D)y=0 is $y_g = c_1 + c_2 cos x + c_3 sin x + c_4 e^x + c_5 e^{-x}$. Now I can apply two methods:




    1. Assume particular solution to be $Axe^x$ and solve. This is linearly independant from $y_g$. But finding $D^5$ can be hectic.


    2. Use exponential shift:



    $$(D^5-D)y = 12e^x\
    y = 12 e^xfrac{1}{(D+1)^5-(D+1)}(1) \
    = 12 e^xfrac{1}{(D+1)^4-1}(1)\
    = 12e^x (1+(D+1)^4 + ....)$$



    This gives strange answer. What is the proper method for this?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      The equation is $$(D^5-D)y = 12e^x$$



      Here, the general solution of homogenous (D^5-D)y=0 is $y_g = c_1 + c_2 cos x + c_3 sin x + c_4 e^x + c_5 e^{-x}$. Now I can apply two methods:




      1. Assume particular solution to be $Axe^x$ and solve. This is linearly independant from $y_g$. But finding $D^5$ can be hectic.


      2. Use exponential shift:



      $$(D^5-D)y = 12e^x\
      y = 12 e^xfrac{1}{(D+1)^5-(D+1)}(1) \
      = 12 e^xfrac{1}{(D+1)^4-1}(1)\
      = 12e^x (1+(D+1)^4 + ....)$$



      This gives strange answer. What is the proper method for this?










      share|cite|improve this question









      $endgroup$




      The equation is $$(D^5-D)y = 12e^x$$



      Here, the general solution of homogenous (D^5-D)y=0 is $y_g = c_1 + c_2 cos x + c_3 sin x + c_4 e^x + c_5 e^{-x}$. Now I can apply two methods:




      1. Assume particular solution to be $Axe^x$ and solve. This is linearly independant from $y_g$. But finding $D^5$ can be hectic.


      2. Use exponential shift:



      $$(D^5-D)y = 12e^x\
      y = 12 e^xfrac{1}{(D+1)^5-(D+1)}(1) \
      = 12 e^xfrac{1}{(D+1)^4-1}(1)\
      = 12e^x (1+(D+1)^4 + ....)$$



      This gives strange answer. What is the proper method for this?







      calculus ordinary-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 19 at 6:49









      jeeajeea

      58515




      58515






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          1. More efficient way is as follows. Let us write $T=D^5-D$. For any $rinBbb C$, we have
          $$
          T[e^{rx}]=frac{d^5}{dx^5}e^{rx}-frac{d}{dx}e^{rx}=(r^5-r)e^{rx}.
          $$
          Now, differentiate with respect to $r$. Then we get
          $$
          frac{partial }{partial r}T[e^{rx}]=Tleft[frac{partial }{partial r}e^{rx}right]=T[xe^{rx}]=frac{partial }{partial r}left((r^5-r)e^{rx}right)=(5r^4-1)e^{rx}+(r^5-r)xe^{rx}.
          $$
          We get by letting $r=1$
          $$
          T[xe^x]=4e^x.
          $$
          Hence, $T[3xe^x]=12e^x$ and $3xe^x$ is a particular solution of the equation.



          2. In fact, correct formula should be
          $$
          y=12(D^5-D)^{-1}[e^{x}],
          $$
          not
          $$
          y=12e^x (D^5-D)^{-1}[1].
          $$

          Note that $D^5-D=(D-1)(D^4+D^3+D^2+D)$. Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have
          $$
          (D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x.
          $$
          Finally, since $(D-1)[xe^x]=e^x$, we have
          $$
          (D-1)^{-1}[3e^x]=(D-1)^{-1}(D^4+D^3+D^2+D)^{-1}[12e^x]=3xe^x.
          $$
          This also gives a particular solution $3xe^x$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            sorry i dont understand your method 2
            $endgroup$
            – jeea
            Jan 19 at 16:38










          • $begingroup$
            $$12e^x stackrel{(D^4+D^3+D^2+D)^{-1}}Longrightarrow 3e^xstackrel{(D-1)^{-1}}Longrightarrow 3xe^x.$$ $$12e^x stackrel{D^4+D^3+D^2+D}Longleftarrow 3e^xstackrel{D-1}Longleftarrow 3xe^x.$$Can you please be more specific about which part of the argument you don't understand?
            $endgroup$
            – Song
            Jan 19 at 16:42












          • $begingroup$
            Yes the first line only, from 12ex to 3ex
            $endgroup$
            – jeea
            Jan 19 at 17:27






          • 1




            $begingroup$
            @jeea Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have $(D^4+D^3+D^2+D)^{-1}[4e^x]=e^x$. By multiplying $3$, we have $(D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x$.
            $endgroup$
            – Song
            Jan 19 at 17:41












          • $begingroup$
            Oh so we have to observe and predict very carefullly
            $endgroup$
            – jeea
            Jan 20 at 4:20











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079072%2fd5-dy-12ex-using-exponential-shift%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          1. More efficient way is as follows. Let us write $T=D^5-D$. For any $rinBbb C$, we have
          $$
          T[e^{rx}]=frac{d^5}{dx^5}e^{rx}-frac{d}{dx}e^{rx}=(r^5-r)e^{rx}.
          $$
          Now, differentiate with respect to $r$. Then we get
          $$
          frac{partial }{partial r}T[e^{rx}]=Tleft[frac{partial }{partial r}e^{rx}right]=T[xe^{rx}]=frac{partial }{partial r}left((r^5-r)e^{rx}right)=(5r^4-1)e^{rx}+(r^5-r)xe^{rx}.
          $$
          We get by letting $r=1$
          $$
          T[xe^x]=4e^x.
          $$
          Hence, $T[3xe^x]=12e^x$ and $3xe^x$ is a particular solution of the equation.



          2. In fact, correct formula should be
          $$
          y=12(D^5-D)^{-1}[e^{x}],
          $$
          not
          $$
          y=12e^x (D^5-D)^{-1}[1].
          $$

          Note that $D^5-D=(D-1)(D^4+D^3+D^2+D)$. Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have
          $$
          (D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x.
          $$
          Finally, since $(D-1)[xe^x]=e^x$, we have
          $$
          (D-1)^{-1}[3e^x]=(D-1)^{-1}(D^4+D^3+D^2+D)^{-1}[12e^x]=3xe^x.
          $$
          This also gives a particular solution $3xe^x$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            sorry i dont understand your method 2
            $endgroup$
            – jeea
            Jan 19 at 16:38










          • $begingroup$
            $$12e^x stackrel{(D^4+D^3+D^2+D)^{-1}}Longrightarrow 3e^xstackrel{(D-1)^{-1}}Longrightarrow 3xe^x.$$ $$12e^x stackrel{D^4+D^3+D^2+D}Longleftarrow 3e^xstackrel{D-1}Longleftarrow 3xe^x.$$Can you please be more specific about which part of the argument you don't understand?
            $endgroup$
            – Song
            Jan 19 at 16:42












          • $begingroup$
            Yes the first line only, from 12ex to 3ex
            $endgroup$
            – jeea
            Jan 19 at 17:27






          • 1




            $begingroup$
            @jeea Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have $(D^4+D^3+D^2+D)^{-1}[4e^x]=e^x$. By multiplying $3$, we have $(D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x$.
            $endgroup$
            – Song
            Jan 19 at 17:41












          • $begingroup$
            Oh so we have to observe and predict very carefullly
            $endgroup$
            – jeea
            Jan 20 at 4:20
















          1












          $begingroup$

          1. More efficient way is as follows. Let us write $T=D^5-D$. For any $rinBbb C$, we have
          $$
          T[e^{rx}]=frac{d^5}{dx^5}e^{rx}-frac{d}{dx}e^{rx}=(r^5-r)e^{rx}.
          $$
          Now, differentiate with respect to $r$. Then we get
          $$
          frac{partial }{partial r}T[e^{rx}]=Tleft[frac{partial }{partial r}e^{rx}right]=T[xe^{rx}]=frac{partial }{partial r}left((r^5-r)e^{rx}right)=(5r^4-1)e^{rx}+(r^5-r)xe^{rx}.
          $$
          We get by letting $r=1$
          $$
          T[xe^x]=4e^x.
          $$
          Hence, $T[3xe^x]=12e^x$ and $3xe^x$ is a particular solution of the equation.



          2. In fact, correct formula should be
          $$
          y=12(D^5-D)^{-1}[e^{x}],
          $$
          not
          $$
          y=12e^x (D^5-D)^{-1}[1].
          $$

          Note that $D^5-D=(D-1)(D^4+D^3+D^2+D)$. Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have
          $$
          (D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x.
          $$
          Finally, since $(D-1)[xe^x]=e^x$, we have
          $$
          (D-1)^{-1}[3e^x]=(D-1)^{-1}(D^4+D^3+D^2+D)^{-1}[12e^x]=3xe^x.
          $$
          This also gives a particular solution $3xe^x$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            sorry i dont understand your method 2
            $endgroup$
            – jeea
            Jan 19 at 16:38










          • $begingroup$
            $$12e^x stackrel{(D^4+D^3+D^2+D)^{-1}}Longrightarrow 3e^xstackrel{(D-1)^{-1}}Longrightarrow 3xe^x.$$ $$12e^x stackrel{D^4+D^3+D^2+D}Longleftarrow 3e^xstackrel{D-1}Longleftarrow 3xe^x.$$Can you please be more specific about which part of the argument you don't understand?
            $endgroup$
            – Song
            Jan 19 at 16:42












          • $begingroup$
            Yes the first line only, from 12ex to 3ex
            $endgroup$
            – jeea
            Jan 19 at 17:27






          • 1




            $begingroup$
            @jeea Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have $(D^4+D^3+D^2+D)^{-1}[4e^x]=e^x$. By multiplying $3$, we have $(D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x$.
            $endgroup$
            – Song
            Jan 19 at 17:41












          • $begingroup$
            Oh so we have to observe and predict very carefullly
            $endgroup$
            – jeea
            Jan 20 at 4:20














          1












          1








          1





          $begingroup$

          1. More efficient way is as follows. Let us write $T=D^5-D$. For any $rinBbb C$, we have
          $$
          T[e^{rx}]=frac{d^5}{dx^5}e^{rx}-frac{d}{dx}e^{rx}=(r^5-r)e^{rx}.
          $$
          Now, differentiate with respect to $r$. Then we get
          $$
          frac{partial }{partial r}T[e^{rx}]=Tleft[frac{partial }{partial r}e^{rx}right]=T[xe^{rx}]=frac{partial }{partial r}left((r^5-r)e^{rx}right)=(5r^4-1)e^{rx}+(r^5-r)xe^{rx}.
          $$
          We get by letting $r=1$
          $$
          T[xe^x]=4e^x.
          $$
          Hence, $T[3xe^x]=12e^x$ and $3xe^x$ is a particular solution of the equation.



          2. In fact, correct formula should be
          $$
          y=12(D^5-D)^{-1}[e^{x}],
          $$
          not
          $$
          y=12e^x (D^5-D)^{-1}[1].
          $$

          Note that $D^5-D=(D-1)(D^4+D^3+D^2+D)$. Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have
          $$
          (D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x.
          $$
          Finally, since $(D-1)[xe^x]=e^x$, we have
          $$
          (D-1)^{-1}[3e^x]=(D-1)^{-1}(D^4+D^3+D^2+D)^{-1}[12e^x]=3xe^x.
          $$
          This also gives a particular solution $3xe^x$.






          share|cite|improve this answer











          $endgroup$



          1. More efficient way is as follows. Let us write $T=D^5-D$. For any $rinBbb C$, we have
          $$
          T[e^{rx}]=frac{d^5}{dx^5}e^{rx}-frac{d}{dx}e^{rx}=(r^5-r)e^{rx}.
          $$
          Now, differentiate with respect to $r$. Then we get
          $$
          frac{partial }{partial r}T[e^{rx}]=Tleft[frac{partial }{partial r}e^{rx}right]=T[xe^{rx}]=frac{partial }{partial r}left((r^5-r)e^{rx}right)=(5r^4-1)e^{rx}+(r^5-r)xe^{rx}.
          $$
          We get by letting $r=1$
          $$
          T[xe^x]=4e^x.
          $$
          Hence, $T[3xe^x]=12e^x$ and $3xe^x$ is a particular solution of the equation.



          2. In fact, correct formula should be
          $$
          y=12(D^5-D)^{-1}[e^{x}],
          $$
          not
          $$
          y=12e^x (D^5-D)^{-1}[1].
          $$

          Note that $D^5-D=(D-1)(D^4+D^3+D^2+D)$. Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have
          $$
          (D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x.
          $$
          Finally, since $(D-1)[xe^x]=e^x$, we have
          $$
          (D-1)^{-1}[3e^x]=(D-1)^{-1}(D^4+D^3+D^2+D)^{-1}[12e^x]=3xe^x.
          $$
          This also gives a particular solution $3xe^x$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 19 at 10:00

























          answered Jan 19 at 7:56









          SongSong

          13.2k632




          13.2k632












          • $begingroup$
            sorry i dont understand your method 2
            $endgroup$
            – jeea
            Jan 19 at 16:38










          • $begingroup$
            $$12e^x stackrel{(D^4+D^3+D^2+D)^{-1}}Longrightarrow 3e^xstackrel{(D-1)^{-1}}Longrightarrow 3xe^x.$$ $$12e^x stackrel{D^4+D^3+D^2+D}Longleftarrow 3e^xstackrel{D-1}Longleftarrow 3xe^x.$$Can you please be more specific about which part of the argument you don't understand?
            $endgroup$
            – Song
            Jan 19 at 16:42












          • $begingroup$
            Yes the first line only, from 12ex to 3ex
            $endgroup$
            – jeea
            Jan 19 at 17:27






          • 1




            $begingroup$
            @jeea Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have $(D^4+D^3+D^2+D)^{-1}[4e^x]=e^x$. By multiplying $3$, we have $(D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x$.
            $endgroup$
            – Song
            Jan 19 at 17:41












          • $begingroup$
            Oh so we have to observe and predict very carefullly
            $endgroup$
            – jeea
            Jan 20 at 4:20


















          • $begingroup$
            sorry i dont understand your method 2
            $endgroup$
            – jeea
            Jan 19 at 16:38










          • $begingroup$
            $$12e^x stackrel{(D^4+D^3+D^2+D)^{-1}}Longrightarrow 3e^xstackrel{(D-1)^{-1}}Longrightarrow 3xe^x.$$ $$12e^x stackrel{D^4+D^3+D^2+D}Longleftarrow 3e^xstackrel{D-1}Longleftarrow 3xe^x.$$Can you please be more specific about which part of the argument you don't understand?
            $endgroup$
            – Song
            Jan 19 at 16:42












          • $begingroup$
            Yes the first line only, from 12ex to 3ex
            $endgroup$
            – jeea
            Jan 19 at 17:27






          • 1




            $begingroup$
            @jeea Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have $(D^4+D^3+D^2+D)^{-1}[4e^x]=e^x$. By multiplying $3$, we have $(D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x$.
            $endgroup$
            – Song
            Jan 19 at 17:41












          • $begingroup$
            Oh so we have to observe and predict very carefullly
            $endgroup$
            – jeea
            Jan 20 at 4:20
















          $begingroup$
          sorry i dont understand your method 2
          $endgroup$
          – jeea
          Jan 19 at 16:38




          $begingroup$
          sorry i dont understand your method 2
          $endgroup$
          – jeea
          Jan 19 at 16:38












          $begingroup$
          $$12e^x stackrel{(D^4+D^3+D^2+D)^{-1}}Longrightarrow 3e^xstackrel{(D-1)^{-1}}Longrightarrow 3xe^x.$$ $$12e^x stackrel{D^4+D^3+D^2+D}Longleftarrow 3e^xstackrel{D-1}Longleftarrow 3xe^x.$$Can you please be more specific about which part of the argument you don't understand?
          $endgroup$
          – Song
          Jan 19 at 16:42






          $begingroup$
          $$12e^x stackrel{(D^4+D^3+D^2+D)^{-1}}Longrightarrow 3e^xstackrel{(D-1)^{-1}}Longrightarrow 3xe^x.$$ $$12e^x stackrel{D^4+D^3+D^2+D}Longleftarrow 3e^xstackrel{D-1}Longleftarrow 3xe^x.$$Can you please be more specific about which part of the argument you don't understand?
          $endgroup$
          – Song
          Jan 19 at 16:42














          $begingroup$
          Yes the first line only, from 12ex to 3ex
          $endgroup$
          – jeea
          Jan 19 at 17:27




          $begingroup$
          Yes the first line only, from 12ex to 3ex
          $endgroup$
          – jeea
          Jan 19 at 17:27




          1




          1




          $begingroup$
          @jeea Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have $(D^4+D^3+D^2+D)^{-1}[4e^x]=e^x$. By multiplying $3$, we have $(D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x$.
          $endgroup$
          – Song
          Jan 19 at 17:41






          $begingroup$
          @jeea Since $(D^4+D^3+D^2+D)[e^x]=4e^x$, we have $(D^4+D^3+D^2+D)^{-1}[4e^x]=e^x$. By multiplying $3$, we have $(D^4+D^3+D^2+D)^{-1}[12e^x]=3e^x$.
          $endgroup$
          – Song
          Jan 19 at 17:41














          $begingroup$
          Oh so we have to observe and predict very carefullly
          $endgroup$
          – jeea
          Jan 20 at 4:20




          $begingroup$
          Oh so we have to observe and predict very carefullly
          $endgroup$
          – jeea
          Jan 20 at 4:20


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079072%2fd5-dy-12ex-using-exponential-shift%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          What does “Dominus providebit” mean?

          Antonio Litta Visconti Arese