Probability calculations verification request: a distribution function related problem

Multi tool use
Multi tool use












0












$begingroup$


Let $X$ have distribution function $F(x)$ expressed by



begin{cases}
0 & mbox{if } x < 0 \
x/2 & mbox{if } 0leq x leq 2 \
1 & mbox{if } x geq 2
end{cases}



and let $Y = X^{2}$. Find



(a) $textbf{P}(frac{1}{2}leq Xleq frac{3}{2})$



(b) $textbf{P}(1leq X < 2)$



(c) $textbf{P}(Yleq X)$



(d) $textbf{P}(Xleq 2Y)$



(e) $textbf{P}(X+Yleqfrac{3}{4})$



(f) The distribution of $Z = sqrt{X}$.



MY ATTEMPT



(a) $displaystyletextbf{P}(0.5leq Xleq 1.5) = F(1.5) - lim_{xuparrow 0.5} F(x) = 0.75 - 0.25 = 0.5$



(b) $displaystyletextbf{P}(1leq X < 2) = lim_{xuparrow 2}F(x) - lim_{xuparrow 1}F(x) = 1 - 0.5 = 0.5$



(c) $displaystyletextbf{P}(Yleq X) = textbf{P}(X^{2} leq X) = textbf{P}(X(X-1) leq 0) = textbf{P}(0 leq Xleq 1)$



$displaystyletherefore textbf{P}(Yleq X) = F(1) - lim_{xuparrow 0}F(x) = 0.5 - 0 = 0.5$



(d) $displaystyletextbf{P}(X leq 2Y) = textbf{P}(Xleq 2X^{2}) = textbf{P}(X(2X-1)geq0) = 1 - textbf{P}(X<0.5)$



$displaystyletherefore textbf{P}(Xleq 2Y) = 1 - lim_{xuparrow 0.5}F(x) = 1 - 0 .25 = 0.75$



(e) $textbf{P}(X+Yleqfrac{3}{4}) = textbf{P}(4X^{2} + 4X - 3leq 0) = textbf{P}(-1.5 leq Xleq 0.5)$



$displaystyletherefore textbf{P}(X+Yleq 0.75) = F(0.5) - lim_{xuparrow-1.5}F(x) = 0.25 - 0 = 0.25$



(f) I am not sure how to solve it. Here is my attempt



begin{align*}
textbf{P}(Zleq z) = textbf{P}(sqrt{X}leq z) = textbf{P}(Xleq z^{2}) = F_{X}(z^{2})
end{align*}



More precisely, the distribution function of $Z$ is given by



begin{cases}
0 & mbox{if } z < 0 \
z^{2}/2 & mbox{if } 0leq z leq sqrt{2} \
1 & mbox{if } z geqsqrt{2}
end{cases}



Could someone please double-check my results? I thank in advance for any contribution.



EDIT



I have edited the answer according to Kavi's contribution. Any other contribution is equally welcome as well.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $X$ have distribution function $F(x)$ expressed by



    begin{cases}
    0 & mbox{if } x < 0 \
    x/2 & mbox{if } 0leq x leq 2 \
    1 & mbox{if } x geq 2
    end{cases}



    and let $Y = X^{2}$. Find



    (a) $textbf{P}(frac{1}{2}leq Xleq frac{3}{2})$



    (b) $textbf{P}(1leq X < 2)$



    (c) $textbf{P}(Yleq X)$



    (d) $textbf{P}(Xleq 2Y)$



    (e) $textbf{P}(X+Yleqfrac{3}{4})$



    (f) The distribution of $Z = sqrt{X}$.



    MY ATTEMPT



    (a) $displaystyletextbf{P}(0.5leq Xleq 1.5) = F(1.5) - lim_{xuparrow 0.5} F(x) = 0.75 - 0.25 = 0.5$



    (b) $displaystyletextbf{P}(1leq X < 2) = lim_{xuparrow 2}F(x) - lim_{xuparrow 1}F(x) = 1 - 0.5 = 0.5$



    (c) $displaystyletextbf{P}(Yleq X) = textbf{P}(X^{2} leq X) = textbf{P}(X(X-1) leq 0) = textbf{P}(0 leq Xleq 1)$



    $displaystyletherefore textbf{P}(Yleq X) = F(1) - lim_{xuparrow 0}F(x) = 0.5 - 0 = 0.5$



    (d) $displaystyletextbf{P}(X leq 2Y) = textbf{P}(Xleq 2X^{2}) = textbf{P}(X(2X-1)geq0) = 1 - textbf{P}(X<0.5)$



    $displaystyletherefore textbf{P}(Xleq 2Y) = 1 - lim_{xuparrow 0.5}F(x) = 1 - 0 .25 = 0.75$



    (e) $textbf{P}(X+Yleqfrac{3}{4}) = textbf{P}(4X^{2} + 4X - 3leq 0) = textbf{P}(-1.5 leq Xleq 0.5)$



    $displaystyletherefore textbf{P}(X+Yleq 0.75) = F(0.5) - lim_{xuparrow-1.5}F(x) = 0.25 - 0 = 0.25$



    (f) I am not sure how to solve it. Here is my attempt



    begin{align*}
    textbf{P}(Zleq z) = textbf{P}(sqrt{X}leq z) = textbf{P}(Xleq z^{2}) = F_{X}(z^{2})
    end{align*}



    More precisely, the distribution function of $Z$ is given by



    begin{cases}
    0 & mbox{if } z < 0 \
    z^{2}/2 & mbox{if } 0leq z leq sqrt{2} \
    1 & mbox{if } z geqsqrt{2}
    end{cases}



    Could someone please double-check my results? I thank in advance for any contribution.



    EDIT



    I have edited the answer according to Kavi's contribution. Any other contribution is equally welcome as well.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $X$ have distribution function $F(x)$ expressed by



      begin{cases}
      0 & mbox{if } x < 0 \
      x/2 & mbox{if } 0leq x leq 2 \
      1 & mbox{if } x geq 2
      end{cases}



      and let $Y = X^{2}$. Find



      (a) $textbf{P}(frac{1}{2}leq Xleq frac{3}{2})$



      (b) $textbf{P}(1leq X < 2)$



      (c) $textbf{P}(Yleq X)$



      (d) $textbf{P}(Xleq 2Y)$



      (e) $textbf{P}(X+Yleqfrac{3}{4})$



      (f) The distribution of $Z = sqrt{X}$.



      MY ATTEMPT



      (a) $displaystyletextbf{P}(0.5leq Xleq 1.5) = F(1.5) - lim_{xuparrow 0.5} F(x) = 0.75 - 0.25 = 0.5$



      (b) $displaystyletextbf{P}(1leq X < 2) = lim_{xuparrow 2}F(x) - lim_{xuparrow 1}F(x) = 1 - 0.5 = 0.5$



      (c) $displaystyletextbf{P}(Yleq X) = textbf{P}(X^{2} leq X) = textbf{P}(X(X-1) leq 0) = textbf{P}(0 leq Xleq 1)$



      $displaystyletherefore textbf{P}(Yleq X) = F(1) - lim_{xuparrow 0}F(x) = 0.5 - 0 = 0.5$



      (d) $displaystyletextbf{P}(X leq 2Y) = textbf{P}(Xleq 2X^{2}) = textbf{P}(X(2X-1)geq0) = 1 - textbf{P}(X<0.5)$



      $displaystyletherefore textbf{P}(Xleq 2Y) = 1 - lim_{xuparrow 0.5}F(x) = 1 - 0 .25 = 0.75$



      (e) $textbf{P}(X+Yleqfrac{3}{4}) = textbf{P}(4X^{2} + 4X - 3leq 0) = textbf{P}(-1.5 leq Xleq 0.5)$



      $displaystyletherefore textbf{P}(X+Yleq 0.75) = F(0.5) - lim_{xuparrow-1.5}F(x) = 0.25 - 0 = 0.25$



      (f) I am not sure how to solve it. Here is my attempt



      begin{align*}
      textbf{P}(Zleq z) = textbf{P}(sqrt{X}leq z) = textbf{P}(Xleq z^{2}) = F_{X}(z^{2})
      end{align*}



      More precisely, the distribution function of $Z$ is given by



      begin{cases}
      0 & mbox{if } z < 0 \
      z^{2}/2 & mbox{if } 0leq z leq sqrt{2} \
      1 & mbox{if } z geqsqrt{2}
      end{cases}



      Could someone please double-check my results? I thank in advance for any contribution.



      EDIT



      I have edited the answer according to Kavi's contribution. Any other contribution is equally welcome as well.










      share|cite|improve this question











      $endgroup$




      Let $X$ have distribution function $F(x)$ expressed by



      begin{cases}
      0 & mbox{if } x < 0 \
      x/2 & mbox{if } 0leq x leq 2 \
      1 & mbox{if } x geq 2
      end{cases}



      and let $Y = X^{2}$. Find



      (a) $textbf{P}(frac{1}{2}leq Xleq frac{3}{2})$



      (b) $textbf{P}(1leq X < 2)$



      (c) $textbf{P}(Yleq X)$



      (d) $textbf{P}(Xleq 2Y)$



      (e) $textbf{P}(X+Yleqfrac{3}{4})$



      (f) The distribution of $Z = sqrt{X}$.



      MY ATTEMPT



      (a) $displaystyletextbf{P}(0.5leq Xleq 1.5) = F(1.5) - lim_{xuparrow 0.5} F(x) = 0.75 - 0.25 = 0.5$



      (b) $displaystyletextbf{P}(1leq X < 2) = lim_{xuparrow 2}F(x) - lim_{xuparrow 1}F(x) = 1 - 0.5 = 0.5$



      (c) $displaystyletextbf{P}(Yleq X) = textbf{P}(X^{2} leq X) = textbf{P}(X(X-1) leq 0) = textbf{P}(0 leq Xleq 1)$



      $displaystyletherefore textbf{P}(Yleq X) = F(1) - lim_{xuparrow 0}F(x) = 0.5 - 0 = 0.5$



      (d) $displaystyletextbf{P}(X leq 2Y) = textbf{P}(Xleq 2X^{2}) = textbf{P}(X(2X-1)geq0) = 1 - textbf{P}(X<0.5)$



      $displaystyletherefore textbf{P}(Xleq 2Y) = 1 - lim_{xuparrow 0.5}F(x) = 1 - 0 .25 = 0.75$



      (e) $textbf{P}(X+Yleqfrac{3}{4}) = textbf{P}(4X^{2} + 4X - 3leq 0) = textbf{P}(-1.5 leq Xleq 0.5)$



      $displaystyletherefore textbf{P}(X+Yleq 0.75) = F(0.5) - lim_{xuparrow-1.5}F(x) = 0.25 - 0 = 0.25$



      (f) I am not sure how to solve it. Here is my attempt



      begin{align*}
      textbf{P}(Zleq z) = textbf{P}(sqrt{X}leq z) = textbf{P}(Xleq z^{2}) = F_{X}(z^{2})
      end{align*}



      More precisely, the distribution function of $Z$ is given by



      begin{cases}
      0 & mbox{if } z < 0 \
      z^{2}/2 & mbox{if } 0leq z leq sqrt{2} \
      1 & mbox{if } z geqsqrt{2}
      end{cases}



      Could someone please double-check my results? I thank in advance for any contribution.



      EDIT



      I have edited the answer according to Kavi's contribution. Any other contribution is equally welcome as well.







      probability probability-theory proof-verification probability-distributions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 22 at 19:52







      user1337

















      asked Jan 21 at 23:14









      user1337user1337

      46110




      46110






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          I think there is a mistake in e). $4X^{2}+4X-3 leq 0$ gives $-frac 3 2 leq X leq frac 1 2$. In f) you should replace the condition $0 leq z leq 2$ by $0 leq z^{2} leq 2$ or $0 leq z leq sqrt 2$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks, Kavi, for the contribution. I have edited the question according to your observations.
            $endgroup$
            – user1337
            Jan 21 at 23:51











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082539%2fprobability-calculations-verification-request-a-distribution-function-related-p%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          I think there is a mistake in e). $4X^{2}+4X-3 leq 0$ gives $-frac 3 2 leq X leq frac 1 2$. In f) you should replace the condition $0 leq z leq 2$ by $0 leq z^{2} leq 2$ or $0 leq z leq sqrt 2$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks, Kavi, for the contribution. I have edited the question according to your observations.
            $endgroup$
            – user1337
            Jan 21 at 23:51
















          1












          $begingroup$

          I think there is a mistake in e). $4X^{2}+4X-3 leq 0$ gives $-frac 3 2 leq X leq frac 1 2$. In f) you should replace the condition $0 leq z leq 2$ by $0 leq z^{2} leq 2$ or $0 leq z leq sqrt 2$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks, Kavi, for the contribution. I have edited the question according to your observations.
            $endgroup$
            – user1337
            Jan 21 at 23:51














          1












          1








          1





          $begingroup$

          I think there is a mistake in e). $4X^{2}+4X-3 leq 0$ gives $-frac 3 2 leq X leq frac 1 2$. In f) you should replace the condition $0 leq z leq 2$ by $0 leq z^{2} leq 2$ or $0 leq z leq sqrt 2$.






          share|cite|improve this answer









          $endgroup$



          I think there is a mistake in e). $4X^{2}+4X-3 leq 0$ gives $-frac 3 2 leq X leq frac 1 2$. In f) you should replace the condition $0 leq z leq 2$ by $0 leq z^{2} leq 2$ or $0 leq z leq sqrt 2$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 21 at 23:40









          Kavi Rama MurthyKavi Rama Murthy

          62.7k42262




          62.7k42262












          • $begingroup$
            Thanks, Kavi, for the contribution. I have edited the question according to your observations.
            $endgroup$
            – user1337
            Jan 21 at 23:51


















          • $begingroup$
            Thanks, Kavi, for the contribution. I have edited the question according to your observations.
            $endgroup$
            – user1337
            Jan 21 at 23:51
















          $begingroup$
          Thanks, Kavi, for the contribution. I have edited the question according to your observations.
          $endgroup$
          – user1337
          Jan 21 at 23:51




          $begingroup$
          Thanks, Kavi, for the contribution. I have edited the question according to your observations.
          $endgroup$
          – user1337
          Jan 21 at 23:51


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082539%2fprobability-calculations-verification-request-a-distribution-function-related-p%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          PF 3uVhpl77V6UZVp,pbrqjc3CHcWwitSbt
          cRxRxr44KJ,fcMTbmZ wWddLjtnzFUPl

          Popular posts from this blog

          The Binding of Isaac: Rebirth/Afterbirth

          Mario Kart Wii

          Dobbiaco