Laurent series of a fractional cosine and sine












0












$begingroup$


i was wondering how i can write the laurent series of




$$cos(dfrac{1}{z-2})$$ in z=2 ?




and if i want the laurent series of $$sin(dfrac{1}{z})$$ ( for Z=2 too , how it is because here 2 is not a singualrity and i don't know how to write it if it's not a singularity )










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    i was wondering how i can write the laurent series of




    $$cos(dfrac{1}{z-2})$$ in z=2 ?




    and if i want the laurent series of $$sin(dfrac{1}{z})$$ ( for Z=2 too , how it is because here 2 is not a singualrity and i don't know how to write it if it's not a singularity )










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      i was wondering how i can write the laurent series of




      $$cos(dfrac{1}{z-2})$$ in z=2 ?




      and if i want the laurent series of $$sin(dfrac{1}{z})$$ ( for Z=2 too , how it is because here 2 is not a singualrity and i don't know how to write it if it's not a singularity )










      share|cite|improve this question











      $endgroup$




      i was wondering how i can write the laurent series of




      $$cos(dfrac{1}{z-2})$$ in z=2 ?




      and if i want the laurent series of $$sin(dfrac{1}{z})$$ ( for Z=2 too , how it is because here 2 is not a singualrity and i don't know how to write it if it's not a singularity )







      complex-analysis trigonometry taylor-expansion laurent-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 21 at 19:40









      José Carlos Santos

      164k22131234




      164k22131234










      asked Jul 26 '18 at 13:01









      xmaionxxmaionx

      124




      124






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Since$$cos(z)=1-frac{z^2}{2!}+frac{z^4}{4!}-cdots,$$you have$$cosleft(frac1{z-2}right)=1-frac1{2!(z-2)^2}+frac1{4!(z-2)^4}-cdots$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            BUT is this not centered in 0 ? i need the one centered in 2 and i'm not understanding :(
            $endgroup$
            – xmaionx
            Jul 26 '18 at 13:19










          • $begingroup$
            How could this not be centered at $2$!? Don't you see all those $(z−2)^k$? Do you see any power of $z$ in my answer?
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:31












          • $begingroup$
            so if for instance i have cos (1/(z-3)) so the laurent series centered in 3 is $$cosleft(frac1{z-3}right)=1-frac1{2!(z-3)^2}+frac1{4!(z-3)^4}-cdots$$
            $endgroup$
            – xmaionx
            Jul 26 '18 at 13:32








          • 1




            $begingroup$
            @xmaionx In fact.
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:33






          • 1




            $begingroup$
            @xmaionx There's no simple answer for that question.
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:54











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863382%2flaurent-series-of-a-fractional-cosine-and-sine%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          Since$$cos(z)=1-frac{z^2}{2!}+frac{z^4}{4!}-cdots,$$you have$$cosleft(frac1{z-2}right)=1-frac1{2!(z-2)^2}+frac1{4!(z-2)^4}-cdots$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            BUT is this not centered in 0 ? i need the one centered in 2 and i'm not understanding :(
            $endgroup$
            – xmaionx
            Jul 26 '18 at 13:19










          • $begingroup$
            How could this not be centered at $2$!? Don't you see all those $(z−2)^k$? Do you see any power of $z$ in my answer?
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:31












          • $begingroup$
            so if for instance i have cos (1/(z-3)) so the laurent series centered in 3 is $$cosleft(frac1{z-3}right)=1-frac1{2!(z-3)^2}+frac1{4!(z-3)^4}-cdots$$
            $endgroup$
            – xmaionx
            Jul 26 '18 at 13:32








          • 1




            $begingroup$
            @xmaionx In fact.
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:33






          • 1




            $begingroup$
            @xmaionx There's no simple answer for that question.
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:54
















          0












          $begingroup$

          Since$$cos(z)=1-frac{z^2}{2!}+frac{z^4}{4!}-cdots,$$you have$$cosleft(frac1{z-2}right)=1-frac1{2!(z-2)^2}+frac1{4!(z-2)^4}-cdots$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            BUT is this not centered in 0 ? i need the one centered in 2 and i'm not understanding :(
            $endgroup$
            – xmaionx
            Jul 26 '18 at 13:19










          • $begingroup$
            How could this not be centered at $2$!? Don't you see all those $(z−2)^k$? Do you see any power of $z$ in my answer?
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:31












          • $begingroup$
            so if for instance i have cos (1/(z-3)) so the laurent series centered in 3 is $$cosleft(frac1{z-3}right)=1-frac1{2!(z-3)^2}+frac1{4!(z-3)^4}-cdots$$
            $endgroup$
            – xmaionx
            Jul 26 '18 at 13:32








          • 1




            $begingroup$
            @xmaionx In fact.
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:33






          • 1




            $begingroup$
            @xmaionx There's no simple answer for that question.
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:54














          0












          0








          0





          $begingroup$

          Since$$cos(z)=1-frac{z^2}{2!}+frac{z^4}{4!}-cdots,$$you have$$cosleft(frac1{z-2}right)=1-frac1{2!(z-2)^2}+frac1{4!(z-2)^4}-cdots$$






          share|cite|improve this answer









          $endgroup$



          Since$$cos(z)=1-frac{z^2}{2!}+frac{z^4}{4!}-cdots,$$you have$$cosleft(frac1{z-2}right)=1-frac1{2!(z-2)^2}+frac1{4!(z-2)^4}-cdots$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jul 26 '18 at 13:11









          José Carlos SantosJosé Carlos Santos

          164k22131234




          164k22131234












          • $begingroup$
            BUT is this not centered in 0 ? i need the one centered in 2 and i'm not understanding :(
            $endgroup$
            – xmaionx
            Jul 26 '18 at 13:19










          • $begingroup$
            How could this not be centered at $2$!? Don't you see all those $(z−2)^k$? Do you see any power of $z$ in my answer?
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:31












          • $begingroup$
            so if for instance i have cos (1/(z-3)) so the laurent series centered in 3 is $$cosleft(frac1{z-3}right)=1-frac1{2!(z-3)^2}+frac1{4!(z-3)^4}-cdots$$
            $endgroup$
            – xmaionx
            Jul 26 '18 at 13:32








          • 1




            $begingroup$
            @xmaionx In fact.
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:33






          • 1




            $begingroup$
            @xmaionx There's no simple answer for that question.
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:54


















          • $begingroup$
            BUT is this not centered in 0 ? i need the one centered in 2 and i'm not understanding :(
            $endgroup$
            – xmaionx
            Jul 26 '18 at 13:19










          • $begingroup$
            How could this not be centered at $2$!? Don't you see all those $(z−2)^k$? Do you see any power of $z$ in my answer?
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:31












          • $begingroup$
            so if for instance i have cos (1/(z-3)) so the laurent series centered in 3 is $$cosleft(frac1{z-3}right)=1-frac1{2!(z-3)^2}+frac1{4!(z-3)^4}-cdots$$
            $endgroup$
            – xmaionx
            Jul 26 '18 at 13:32








          • 1




            $begingroup$
            @xmaionx In fact.
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:33






          • 1




            $begingroup$
            @xmaionx There's no simple answer for that question.
            $endgroup$
            – José Carlos Santos
            Jul 26 '18 at 13:54
















          $begingroup$
          BUT is this not centered in 0 ? i need the one centered in 2 and i'm not understanding :(
          $endgroup$
          – xmaionx
          Jul 26 '18 at 13:19




          $begingroup$
          BUT is this not centered in 0 ? i need the one centered in 2 and i'm not understanding :(
          $endgroup$
          – xmaionx
          Jul 26 '18 at 13:19












          $begingroup$
          How could this not be centered at $2$!? Don't you see all those $(z−2)^k$? Do you see any power of $z$ in my answer?
          $endgroup$
          – José Carlos Santos
          Jul 26 '18 at 13:31






          $begingroup$
          How could this not be centered at $2$!? Don't you see all those $(z−2)^k$? Do you see any power of $z$ in my answer?
          $endgroup$
          – José Carlos Santos
          Jul 26 '18 at 13:31














          $begingroup$
          so if for instance i have cos (1/(z-3)) so the laurent series centered in 3 is $$cosleft(frac1{z-3}right)=1-frac1{2!(z-3)^2}+frac1{4!(z-3)^4}-cdots$$
          $endgroup$
          – xmaionx
          Jul 26 '18 at 13:32






          $begingroup$
          so if for instance i have cos (1/(z-3)) so the laurent series centered in 3 is $$cosleft(frac1{z-3}right)=1-frac1{2!(z-3)^2}+frac1{4!(z-3)^4}-cdots$$
          $endgroup$
          – xmaionx
          Jul 26 '18 at 13:32






          1




          1




          $begingroup$
          @xmaionx In fact.
          $endgroup$
          – José Carlos Santos
          Jul 26 '18 at 13:33




          $begingroup$
          @xmaionx In fact.
          $endgroup$
          – José Carlos Santos
          Jul 26 '18 at 13:33




          1




          1




          $begingroup$
          @xmaionx There's no simple answer for that question.
          $endgroup$
          – José Carlos Santos
          Jul 26 '18 at 13:54




          $begingroup$
          @xmaionx There's no simple answer for that question.
          $endgroup$
          – José Carlos Santos
          Jul 26 '18 at 13:54


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863382%2flaurent-series-of-a-fractional-cosine-and-sine%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Mario Kart Wii

          The Binding of Isaac: Rebirth/Afterbirth

          What does “Dominus providebit” mean?