Doobs Martingale inequality
$begingroup$
I am confused on how to calculate the expectation of an integral on this question.
Use the Doob martingale inequality to estimate
$mathbb{E}sup_{0leq s leq t} midint_{0}^{s} cos(u)dB(u)mid^2 quad$ (1)
where $B(t)$ is a one-dimensional Brownian motion.
I understand that (1) is $leq 4mathbb{E}midint_{0}^{s} cos(u)dB(u)mid^2$ but not sure where to go from here. Would welcome any help!
stochastic-processes stochastic-calculus brownian-motion
$endgroup$
add a comment |
$begingroup$
I am confused on how to calculate the expectation of an integral on this question.
Use the Doob martingale inequality to estimate
$mathbb{E}sup_{0leq s leq t} midint_{0}^{s} cos(u)dB(u)mid^2 quad$ (1)
where $B(t)$ is a one-dimensional Brownian motion.
I understand that (1) is $leq 4mathbb{E}midint_{0}^{s} cos(u)dB(u)mid^2$ but not sure where to go from here. Would welcome any help!
stochastic-processes stochastic-calculus brownian-motion
$endgroup$
2
$begingroup$
I love the fact that Doob is a last name. It's great :)
$endgroup$
– Zubin Mukerjee
Jan 22 at 0:02
add a comment |
$begingroup$
I am confused on how to calculate the expectation of an integral on this question.
Use the Doob martingale inequality to estimate
$mathbb{E}sup_{0leq s leq t} midint_{0}^{s} cos(u)dB(u)mid^2 quad$ (1)
where $B(t)$ is a one-dimensional Brownian motion.
I understand that (1) is $leq 4mathbb{E}midint_{0}^{s} cos(u)dB(u)mid^2$ but not sure where to go from here. Would welcome any help!
stochastic-processes stochastic-calculus brownian-motion
$endgroup$
I am confused on how to calculate the expectation of an integral on this question.
Use the Doob martingale inequality to estimate
$mathbb{E}sup_{0leq s leq t} midint_{0}^{s} cos(u)dB(u)mid^2 quad$ (1)
where $B(t)$ is a one-dimensional Brownian motion.
I understand that (1) is $leq 4mathbb{E}midint_{0}^{s} cos(u)dB(u)mid^2$ but not sure where to go from here. Would welcome any help!
stochastic-processes stochastic-calculus brownian-motion
stochastic-processes stochastic-calculus brownian-motion
asked Jan 22 at 0:01
MelMel
61
61
2
$begingroup$
I love the fact that Doob is a last name. It's great :)
$endgroup$
– Zubin Mukerjee
Jan 22 at 0:02
add a comment |
2
$begingroup$
I love the fact that Doob is a last name. It's great :)
$endgroup$
– Zubin Mukerjee
Jan 22 at 0:02
2
2
$begingroup$
I love the fact that Doob is a last name. It's great :)
$endgroup$
– Zubin Mukerjee
Jan 22 at 0:02
$begingroup$
I love the fact that Doob is a last name. It's great :)
$endgroup$
– Zubin Mukerjee
Jan 22 at 0:02
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$E|int_o^{s}cos (u) , dB(u)|^{2}=int_0^{s} cos^{2}(u), du=frac 1 2 int_0^{s} (1+cos(2u)), du =frac 1 2 (s+frac {sin(2s)} 2)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082580%2fdoobs-martingale-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$E|int_o^{s}cos (u) , dB(u)|^{2}=int_0^{s} cos^{2}(u), du=frac 1 2 int_0^{s} (1+cos(2u)), du =frac 1 2 (s+frac {sin(2s)} 2)$.
$endgroup$
add a comment |
$begingroup$
$E|int_o^{s}cos (u) , dB(u)|^{2}=int_0^{s} cos^{2}(u), du=frac 1 2 int_0^{s} (1+cos(2u)), du =frac 1 2 (s+frac {sin(2s)} 2)$.
$endgroup$
add a comment |
$begingroup$
$E|int_o^{s}cos (u) , dB(u)|^{2}=int_0^{s} cos^{2}(u), du=frac 1 2 int_0^{s} (1+cos(2u)), du =frac 1 2 (s+frac {sin(2s)} 2)$.
$endgroup$
$E|int_o^{s}cos (u) , dB(u)|^{2}=int_0^{s} cos^{2}(u), du=frac 1 2 int_0^{s} (1+cos(2u)), du =frac 1 2 (s+frac {sin(2s)} 2)$.
answered Jan 22 at 0:41
Kavi Rama MurthyKavi Rama Murthy
62.7k42262
62.7k42262
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082580%2fdoobs-martingale-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
I love the fact that Doob is a last name. It's great :)
$endgroup$
– Zubin Mukerjee
Jan 22 at 0:02