Doobs Martingale inequality












1












$begingroup$


I am confused on how to calculate the expectation of an integral on this question.



Use the Doob martingale inequality to estimate



$mathbb{E}sup_{0leq s leq t} midint_{0}^{s} cos(u)dB(u)mid^2 quad$ (1)



where $B(t)$ is a one-dimensional Brownian motion.



I understand that (1) is $leq 4mathbb{E}midint_{0}^{s} cos(u)dB(u)mid^2$ but not sure where to go from here. Would welcome any help!










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    I love the fact that Doob is a last name. It's great :)
    $endgroup$
    – Zubin Mukerjee
    Jan 22 at 0:02
















1












$begingroup$


I am confused on how to calculate the expectation of an integral on this question.



Use the Doob martingale inequality to estimate



$mathbb{E}sup_{0leq s leq t} midint_{0}^{s} cos(u)dB(u)mid^2 quad$ (1)



where $B(t)$ is a one-dimensional Brownian motion.



I understand that (1) is $leq 4mathbb{E}midint_{0}^{s} cos(u)dB(u)mid^2$ but not sure where to go from here. Would welcome any help!










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    I love the fact that Doob is a last name. It's great :)
    $endgroup$
    – Zubin Mukerjee
    Jan 22 at 0:02














1












1








1





$begingroup$


I am confused on how to calculate the expectation of an integral on this question.



Use the Doob martingale inequality to estimate



$mathbb{E}sup_{0leq s leq t} midint_{0}^{s} cos(u)dB(u)mid^2 quad$ (1)



where $B(t)$ is a one-dimensional Brownian motion.



I understand that (1) is $leq 4mathbb{E}midint_{0}^{s} cos(u)dB(u)mid^2$ but not sure where to go from here. Would welcome any help!










share|cite|improve this question









$endgroup$




I am confused on how to calculate the expectation of an integral on this question.



Use the Doob martingale inequality to estimate



$mathbb{E}sup_{0leq s leq t} midint_{0}^{s} cos(u)dB(u)mid^2 quad$ (1)



where $B(t)$ is a one-dimensional Brownian motion.



I understand that (1) is $leq 4mathbb{E}midint_{0}^{s} cos(u)dB(u)mid^2$ but not sure where to go from here. Would welcome any help!







stochastic-processes stochastic-calculus brownian-motion






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 22 at 0:01









MelMel

61




61








  • 2




    $begingroup$
    I love the fact that Doob is a last name. It's great :)
    $endgroup$
    – Zubin Mukerjee
    Jan 22 at 0:02














  • 2




    $begingroup$
    I love the fact that Doob is a last name. It's great :)
    $endgroup$
    – Zubin Mukerjee
    Jan 22 at 0:02








2




2




$begingroup$
I love the fact that Doob is a last name. It's great :)
$endgroup$
– Zubin Mukerjee
Jan 22 at 0:02




$begingroup$
I love the fact that Doob is a last name. It's great :)
$endgroup$
– Zubin Mukerjee
Jan 22 at 0:02










1 Answer
1






active

oldest

votes


















0












$begingroup$

$E|int_o^{s}cos (u) , dB(u)|^{2}=int_0^{s} cos^{2}(u), du=frac 1 2 int_0^{s} (1+cos(2u)), du =frac 1 2 (s+frac {sin(2s)} 2)$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082580%2fdoobs-martingale-inequality%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $E|int_o^{s}cos (u) , dB(u)|^{2}=int_0^{s} cos^{2}(u), du=frac 1 2 int_0^{s} (1+cos(2u)), du =frac 1 2 (s+frac {sin(2s)} 2)$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $E|int_o^{s}cos (u) , dB(u)|^{2}=int_0^{s} cos^{2}(u), du=frac 1 2 int_0^{s} (1+cos(2u)), du =frac 1 2 (s+frac {sin(2s)} 2)$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $E|int_o^{s}cos (u) , dB(u)|^{2}=int_0^{s} cos^{2}(u), du=frac 1 2 int_0^{s} (1+cos(2u)), du =frac 1 2 (s+frac {sin(2s)} 2)$.






        share|cite|improve this answer









        $endgroup$



        $E|int_o^{s}cos (u) , dB(u)|^{2}=int_0^{s} cos^{2}(u), du=frac 1 2 int_0^{s} (1+cos(2u)), du =frac 1 2 (s+frac {sin(2s)} 2)$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 22 at 0:41









        Kavi Rama MurthyKavi Rama Murthy

        62.7k42262




        62.7k42262






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082580%2fdoobs-martingale-inequality%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Mario Kart Wii

            The Binding of Isaac: Rebirth/Afterbirth

            What does “Dominus providebit” mean?