Pointwise and uniform convergence $sum_{n=1}^{infty}frac{(n+1)^n-n^n}{n!}x^{n^n}$

Multi tool use
$begingroup$
I am in deadlock studyibg the pointwise and uniform convergence of the following series:
$$sum_{n=1}^{infty}frac{(n+1)^n-n^n}{n!}x^{n^n}$$
Maybe should I handle it as a power series? But how? Any tips?
power-series uniform-convergence pointwise-convergence
$endgroup$
add a comment |
$begingroup$
I am in deadlock studyibg the pointwise and uniform convergence of the following series:
$$sum_{n=1}^{infty}frac{(n+1)^n-n^n}{n!}x^{n^n}$$
Maybe should I handle it as a power series? But how? Any tips?
power-series uniform-convergence pointwise-convergence
$endgroup$
$begingroup$
Did you try d Alembert? I think it works well
$endgroup$
– Marine Galantin
Jan 13 at 14:44
1
$begingroup$
Hint: For $|x|lt1$, show that $|a_n|le(2n)^nx^{n^2}$. Then use the $n$th root test.
$endgroup$
– Barry Cipra
Jan 13 at 15:46
add a comment |
$begingroup$
I am in deadlock studyibg the pointwise and uniform convergence of the following series:
$$sum_{n=1}^{infty}frac{(n+1)^n-n^n}{n!}x^{n^n}$$
Maybe should I handle it as a power series? But how? Any tips?
power-series uniform-convergence pointwise-convergence
$endgroup$
I am in deadlock studyibg the pointwise and uniform convergence of the following series:
$$sum_{n=1}^{infty}frac{(n+1)^n-n^n}{n!}x^{n^n}$$
Maybe should I handle it as a power series? But how? Any tips?
power-series uniform-convergence pointwise-convergence
power-series uniform-convergence pointwise-convergence
edited Jan 13 at 16:43
user
3,9851627
3,9851627
asked Jan 13 at 14:40


F.incF.inc
403110
403110
$begingroup$
Did you try d Alembert? I think it works well
$endgroup$
– Marine Galantin
Jan 13 at 14:44
1
$begingroup$
Hint: For $|x|lt1$, show that $|a_n|le(2n)^nx^{n^2}$. Then use the $n$th root test.
$endgroup$
– Barry Cipra
Jan 13 at 15:46
add a comment |
$begingroup$
Did you try d Alembert? I think it works well
$endgroup$
– Marine Galantin
Jan 13 at 14:44
1
$begingroup$
Hint: For $|x|lt1$, show that $|a_n|le(2n)^nx^{n^2}$. Then use the $n$th root test.
$endgroup$
– Barry Cipra
Jan 13 at 15:46
$begingroup$
Did you try d Alembert? I think it works well
$endgroup$
– Marine Galantin
Jan 13 at 14:44
$begingroup$
Did you try d Alembert? I think it works well
$endgroup$
– Marine Galantin
Jan 13 at 14:44
1
1
$begingroup$
Hint: For $|x|lt1$, show that $|a_n|le(2n)^nx^{n^2}$. Then use the $n$th root test.
$endgroup$
– Barry Cipra
Jan 13 at 15:46
$begingroup$
Hint: For $|x|lt1$, show that $|a_n|le(2n)^nx^{n^2}$. Then use the $n$th root test.
$endgroup$
– Barry Cipra
Jan 13 at 15:46
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072057%2fpointwise-and-uniform-convergence-sum-n-1-infty-fracn1n-nnnxn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072057%2fpointwise-and-uniform-convergence-sum-n-1-infty-fracn1n-nnnxn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
rJBnS2yvS 5NAAWEA 8V,97q06fNvkiLQVilPFMB,6e7EMtJ,mnKfKWqHaEB,9u wzQx0HD,MNjdR5ULR,m pa7I5NJk11sMFesM
$begingroup$
Did you try d Alembert? I think it works well
$endgroup$
– Marine Galantin
Jan 13 at 14:44
1
$begingroup$
Hint: For $|x|lt1$, show that $|a_n|le(2n)^nx^{n^2}$. Then use the $n$th root test.
$endgroup$
– Barry Cipra
Jan 13 at 15:46